Normalized defining polynomial
\( x^{20} - 4 x^{19} - 84 x^{18} + 204 x^{17} + 2735 x^{16} - 2762 x^{15} - 40692 x^{14} + 574 x^{13} + 258918 x^{12} + 90408 x^{11} - 738416 x^{10} - 284990 x^{9} + 977807 x^{8} + 358416 x^{7} - 578692 x^{6} - 212816 x^{5} + 115592 x^{4} + 51424 x^{3} + 2736 x^{2} - 344 x - 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17088376396387871021245779312640000000000=2^{24}\cdot 5^{10}\cdot 7^{16}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{13} + \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{40} a^{18} + \frac{1}{20} a^{17} + \frac{1}{10} a^{16} + \frac{9}{40} a^{14} - \frac{1}{5} a^{13} + \frac{1}{10} a^{12} - \frac{1}{4} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{8} - \frac{7}{20} a^{7} + \frac{19}{40} a^{6} + \frac{3}{20} a^{5} + \frac{1}{5} a^{4} - \frac{3}{10} a^{3} - \frac{1}{20} a^{2} + \frac{1}{10}$, $\frac{1}{116627760686633834017396338296259574969407800} a^{19} + \frac{658551196497865153420033509739007261258607}{58313880343316917008698169148129787484703900} a^{18} + \frac{1267596749259224370046718772197352679438471}{14578470085829229252174542287032446871175975} a^{17} + \frac{2628032767915717476612100462912765066143957}{29156940171658458504349084574064893742351950} a^{16} + \frac{7121055673939492617817272504355663128803389}{116627760686633834017396338296259574969407800} a^{15} - \frac{1045290425613871086337991663698131485185963}{5831388034331691700869816914812978748470390} a^{14} - \frac{7258271946723395813908677208133229148220443}{29156940171658458504349084574064893742351950} a^{13} - \frac{6395990689204443616249507585082277908085311}{58313880343316917008698169148129787484703900} a^{12} - \frac{187721891424886801232717202580001600076891}{14578470085829229252174542287032446871175975} a^{11} - \frac{2934994884403612921206665143561021287161462}{14578470085829229252174542287032446871175975} a^{10} - \frac{10407300957703420755998757618873788175259111}{29156940171658458504349084574064893742351950} a^{9} - \frac{2837191282361608877377562403428943423565091}{58313880343316917008698169148129787484703900} a^{8} + \frac{22198517441605779027097170057546822916598931}{116627760686633834017396338296259574969407800} a^{7} + \frac{7761462553392243024538905719724714401827637}{58313880343316917008698169148129787484703900} a^{6} - \frac{2872072287266558096092637425161480829563203}{5831388034331691700869816914812978748470390} a^{5} + \frac{965247135925908692057172883795727835021138}{14578470085829229252174542287032446871175975} a^{4} + \frac{22855691978273752915219330216837365789472507}{58313880343316917008698169148129787484703900} a^{3} + \frac{2730917386201616103368659100147368057963322}{14578470085829229252174542287032446871175975} a^{2} + \frac{2028552440157925623870620454107825691579951}{29156940171658458504349084574064893742351950} a - \frac{5350969251809268249946994703013998585808684}{14578470085829229252174542287032446871175975}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 82650511663700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 720 |
| The 11 conjugacy class representatives for t20n145 |
| Character table for t20n145 |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.5228900671672832000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
| Degree 10 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 15 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | R | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.16 | $x^{8} + 24 x^{2} + 4$ | $4$ | $2$ | $12$ | $A_4\times C_2$ | $[2, 2]^{6}$ |
| 2.12.12.11 | $x^{12} - 6 x^{10} - 73 x^{8} + 140 x^{6} + 79 x^{4} - 6 x^{2} + 57$ | $2$ | $6$ | $12$ | $A_4 \times C_2$ | $[2, 2]^{6}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $7$ | 7.10.8.1 | $x^{10} - 7 x^{5} + 147$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 7.10.8.1 | $x^{10} - 7 x^{5} + 147$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |