Normalized defining polynomial
\( x^{20} - 554 x^{18} + 128883 x^{16} - 16333702 x^{14} + 1223654732 x^{12} - 55069019284 x^{10} + 1451946981565 x^{8} - 21079412126729 x^{6} + 150667328531683 x^{4} - 438902785988869 x^{2} + 375007194660407 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1678055009725811496947195505354733123810623488=2^{20}\cdot 11^{16}\cdot 23^{5}\cdot 419^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $182.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23, 419$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{86733} a^{14} + \frac{703}{86733} a^{12} - \frac{3138}{9637} a^{10} + \frac{4388}{28911} a^{8} - \frac{4187}{28911} a^{6} + \frac{13703}{86733} a^{4} - \frac{745}{3771} a^{2} + \frac{4}{9}$, $\frac{1}{86733} a^{15} + \frac{703}{86733} a^{13} - \frac{3138}{9637} a^{11} + \frac{4388}{28911} a^{9} - \frac{4187}{28911} a^{7} + \frac{13703}{86733} a^{5} - \frac{745}{3771} a^{3} + \frac{4}{9} a$, $\frac{1}{109023381} a^{16} - \frac{5}{4037903} a^{14} + \frac{423440}{109023381} a^{12} + \frac{9454514}{36341127} a^{10} - \frac{7526494}{36341127} a^{8} - \frac{53816065}{109023381} a^{6} - \frac{8551327}{109023381} a^{4} + \frac{245}{1257} a^{2} - \frac{8}{27}$, $\frac{1}{109023381} a^{17} - \frac{5}{4037903} a^{15} + \frac{423440}{109023381} a^{13} + \frac{9454514}{36341127} a^{11} - \frac{7526494}{36341127} a^{9} - \frac{53816065}{109023381} a^{7} - \frac{8551327}{109023381} a^{5} + \frac{245}{1257} a^{3} - \frac{8}{27} a$, $\frac{1}{4073220956251431617914640041824909237342015218339799} a^{18} + \frac{14528115169299073411789021845378845510173613}{4073220956251431617914640041824909237342015218339799} a^{16} - \frac{187891915939619264190205075964702916634507927}{60794342630618382356934925997386705034955451019997} a^{14} + \frac{590221246803504327355485132889278363414555828316723}{4073220956251431617914640041824909237342015218339799} a^{12} + \frac{61329749796941873466201311112366427642783860157112}{452580106250159068657182226869434359704668357593311} a^{10} + \frac{1377010814461343468574852191710389630272069102853494}{4073220956251431617914640041824909237342015218339799} a^{8} - \frac{455682838330917159545854059340999066274043104467246}{1357740318750477205971546680608303079114005072779933} a^{6} - \frac{1151266736141702318835289022972686318282229837}{422664828914748533559680402804286524576322010827} a^{4} + \frac{403905632810784186491617542983505615862034740}{1008746608388421321144821963733380726912463033} a^{2} - \frac{12294143229357826064359037268849613922974}{104674339357520112186865410784827303819909}$, $\frac{1}{4073220956251431617914640041824909237342015218339799} a^{19} + \frac{14528115169299073411789021845378845510173613}{4073220956251431617914640041824909237342015218339799} a^{17} - \frac{187891915939619264190205075964702916634507927}{60794342630618382356934925997386705034955451019997} a^{15} + \frac{590221246803504327355485132889278363414555828316723}{4073220956251431617914640041824909237342015218339799} a^{13} + \frac{61329749796941873466201311112366427642783860157112}{452580106250159068657182226869434359704668357593311} a^{11} + \frac{1377010814461343468574852191710389630272069102853494}{4073220956251431617914640041824909237342015218339799} a^{9} - \frac{455682838330917159545854059340999066274043104467246}{1357740318750477205971546680608303079114005072779933} a^{7} - \frac{1151266736141702318835289022972686318282229837}{422664828914748533559680402804286524576322010827} a^{5} + \frac{403905632810784186491617542983505615862034740}{1008746608388421321144821963733380726912463033} a^{3} - \frac{12294143229357826064359037268849613922974}{104674339357520112186865410784827303819909} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19129848549700000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 136 conjugacy class representatives for t20n432 are not computed |
| Character table for t20n432 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.2065776536197.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 419 | Data not computed | ||||||