Normalized defining polynomial
\( x^{20} - 4 x^{19} - 42 x^{18} + 158 x^{17} + 759 x^{16} - 2520 x^{15} - 7938 x^{14} + 21338 x^{13} + 52829 x^{12} - 104808 x^{11} - 227556 x^{10} + 305624 x^{9} + 621926 x^{8} - 519716 x^{7} - 1030838 x^{6} + 485792 x^{5} + 956087 x^{4} - 221306 x^{3} - 422874 x^{2} + 38132 x + 58147 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1670627195488492909044967149666304=2^{30}\cdot 11^{18}\cdot 23^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} + \frac{3}{23} a^{17} - \frac{10}{23} a^{16} + \frac{6}{23} a^{15} + \frac{1}{23} a^{14} - \frac{9}{23} a^{13} - \frac{9}{23} a^{12} - \frac{7}{23} a^{11} + \frac{11}{23} a^{10} + \frac{3}{23} a^{9} + \frac{10}{23} a^{8} + \frac{11}{23} a^{7} + \frac{9}{23} a^{6} - \frac{8}{23} a^{5} - \frac{4}{23} a^{4} + \frac{8}{23} a^{3} - \frac{11}{23} a^{2} + \frac{11}{23} a + \frac{6}{23}$, $\frac{1}{621361644313601237747593824161} a^{19} - \frac{4754509562747080589709343398}{621361644313601237747593824161} a^{18} - \frac{1322866717738326829270791706}{5700565544161479245390769029} a^{17} + \frac{86939586066571457105529132935}{621361644313601237747593824161} a^{16} - \frac{201247446014075683717099024904}{621361644313601237747593824161} a^{15} + \frac{8939095642583481571150987055}{27015723665808749467286688007} a^{14} + \frac{82244663783305017636351534193}{621361644313601237747593824161} a^{13} + \frac{129684416368534501265726821698}{621361644313601237747593824161} a^{12} + \frac{283714223174942138498794172493}{621361644313601237747593824161} a^{11} - \frac{98365099213883040598837895212}{621361644313601237747593824161} a^{10} - \frac{267178558712795456818412718477}{621361644313601237747593824161} a^{9} - \frac{90146863688331632980043326072}{621361644313601237747593824161} a^{8} - \frac{269190557193898627986868312674}{621361644313601237747593824161} a^{7} - \frac{23078232929086508869694298242}{621361644313601237747593824161} a^{6} + \frac{290990409091385657462036724811}{621361644313601237747593824161} a^{5} + \frac{294436592429231828350389764915}{621361644313601237747593824161} a^{4} - \frac{75738605688564830972720062504}{621361644313601237747593824161} a^{3} - \frac{305693966199826193944146689157}{621361644313601237747593824161} a^{2} - \frac{28102688417308358563925772089}{621361644313601237747593824161} a - \frac{159147874011152434586068759879}{621361644313601237747593824161}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16195762579.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_2^4:C_5$ (as 20T74):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$ |
| Character table for $C_2^2\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.1277290832423936.2, 10.10.55534384018432.1, 10.10.5048580365312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |