Normalized defining polynomial
\( x^{20} - 4 x^{19} - 60 x^{18} + 236 x^{17} + 1435 x^{16} - 5524 x^{15} - 17726 x^{14} + 66220 x^{13} + 122474 x^{12} - 437336 x^{11} - 480740 x^{10} + 1596028 x^{9} + 1047359 x^{8} - 3070872 x^{7} - 1203606 x^{6} + 2823768 x^{5} + 614261 x^{4} - 1007904 x^{3} - 118608 x^{2} + 70588 x + 1451 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1505680748169532571648000000000000000=2^{30}\cdot 5^{15}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(440=2^{3}\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{440}(1,·)$, $\chi_{440}(67,·)$, $\chi_{440}(147,·)$, $\chi_{440}(9,·)$, $\chi_{440}(267,·)$, $\chi_{440}(81,·)$, $\chi_{440}(3,·)$, $\chi_{440}(203,·)$, $\chi_{440}(89,·)$, $\chi_{440}(27,·)$, $\chi_{440}(361,·)$, $\chi_{440}(289,·)$, $\chi_{440}(163,·)$, $\chi_{440}(401,·)$, $\chi_{440}(169,·)$, $\chi_{440}(323,·)$, $\chi_{440}(427,·)$, $\chi_{440}(49,·)$, $\chi_{440}(243,·)$, $\chi_{440}(201,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{1054855908478} a^{18} + \frac{40274534656}{527427954239} a^{17} + \frac{1600657844}{527427954239} a^{16} + \frac{39130263459}{1054855908478} a^{15} - \frac{52882400951}{1054855908478} a^{14} + \frac{151606853083}{1054855908478} a^{13} - \frac{200202658757}{1054855908478} a^{12} + \frac{179937412937}{1054855908478} a^{11} - \frac{35799794964}{527427954239} a^{10} - \frac{78309698625}{527427954239} a^{9} - \frac{56678828105}{527427954239} a^{8} + \frac{16881612043}{1054855908478} a^{7} - \frac{414260889493}{1054855908478} a^{6} + \frac{234378754158}{527427954239} a^{5} + \frac{89001208760}{527427954239} a^{4} + \frac{234198840155}{1054855908478} a^{3} + \frac{124470694961}{527427954239} a^{2} - \frac{405419500363}{1054855908478} a - \frac{238256932417}{527427954239}$, $\frac{1}{4281612904016756014275834415257362} a^{19} + \frac{356839917976584766098}{2140806452008378007137917207628681} a^{18} - \frac{469404541576807839543254821777165}{4281612904016756014275834415257362} a^{17} - \frac{100669301795353582444284920539516}{2140806452008378007137917207628681} a^{16} - \frac{640735048709489303988157420342601}{4281612904016756014275834415257362} a^{15} - \frac{113443681673730772324109103754957}{2140806452008378007137917207628681} a^{14} - \frac{308307277071703406649013033044728}{2140806452008378007137917207628681} a^{13} - \frac{137731062696940094565080993329823}{2140806452008378007137917207628681} a^{12} - \frac{76827016288093736526983271039509}{2140806452008378007137917207628681} a^{11} - \frac{187694723175284698970262223131671}{2140806452008378007137917207628681} a^{10} + \frac{1734023741209125876601717251550599}{4281612904016756014275834415257362} a^{9} + \frac{903863481330193526154637629978171}{2140806452008378007137917207628681} a^{8} - \frac{473022716048570545887188109064747}{4281612904016756014275834415257362} a^{7} + \frac{538899403773827982126205094530121}{2140806452008378007137917207628681} a^{6} - \frac{702440456892451104117273287855873}{2140806452008378007137917207628681} a^{5} - \frac{119954300878522211778992169161992}{2140806452008378007137917207628681} a^{4} + \frac{266346427291372021630324421700195}{4281612904016756014275834415257362} a^{3} + \frac{652327367854083664825269847776434}{2140806452008378007137917207628681} a^{2} - \frac{2105075437810945802374006820763427}{4281612904016756014275834415257362} a - \frac{174835530679147942812379266343171}{2140806452008378007137917207628681}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 107373870215 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.8000.1, \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |