Properties

Label 20.20.1470391355...0000.1
Degree $20$
Signature $[20, 0]$
Discriminant $2^{20}\cdot 5^{15}\cdot 11^{16}$
Root discriminant $45.54$
Ramified primes $2, 5, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{20}$ (as 20T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -72, 787, -1814, -6419, 20748, 17949, -65992, -15516, 84688, -2270, -48836, 6764, 13960, -2696, -2044, 455, 146, -35, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 4*x^19 - 35*x^18 + 146*x^17 + 455*x^16 - 2044*x^15 - 2696*x^14 + 13960*x^13 + 6764*x^12 - 48836*x^11 - 2270*x^10 + 84688*x^9 - 15516*x^8 - 65992*x^7 + 17949*x^6 + 20748*x^5 - 6419*x^4 - 1814*x^3 + 787*x^2 - 72*x + 1)
 
gp: K = bnfinit(x^20 - 4*x^19 - 35*x^18 + 146*x^17 + 455*x^16 - 2044*x^15 - 2696*x^14 + 13960*x^13 + 6764*x^12 - 48836*x^11 - 2270*x^10 + 84688*x^9 - 15516*x^8 - 65992*x^7 + 17949*x^6 + 20748*x^5 - 6419*x^4 - 1814*x^3 + 787*x^2 - 72*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 4 x^{19} - 35 x^{18} + 146 x^{17} + 455 x^{16} - 2044 x^{15} - 2696 x^{14} + 13960 x^{13} + 6764 x^{12} - 48836 x^{11} - 2270 x^{10} + 84688 x^{9} - 15516 x^{8} - 65992 x^{7} + 17949 x^{6} + 20748 x^{5} - 6419 x^{4} - 1814 x^{3} + 787 x^{2} - 72 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[20, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1470391355634309152000000000000000=2^{20}\cdot 5^{15}\cdot 11^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $45.54$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(220=2^{2}\cdot 5\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{220}(1,·)$, $\chi_{220}(67,·)$, $\chi_{220}(69,·)$, $\chi_{220}(9,·)$, $\chi_{220}(203,·)$, $\chi_{220}(141,·)$, $\chi_{220}(207,·)$, $\chi_{220}(81,·)$, $\chi_{220}(3,·)$, $\chi_{220}(23,·)$, $\chi_{220}(89,·)$, $\chi_{220}(27,·)$, $\chi_{220}(163,·)$, $\chi_{220}(103,·)$, $\chi_{220}(169,·)$, $\chi_{220}(47,·)$, $\chi_{220}(49,·)$, $\chi_{220}(147,·)$, $\chi_{220}(181,·)$, $\chi_{220}(201,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{884372941} a^{18} - \frac{433934556}{884372941} a^{17} + \frac{282192243}{884372941} a^{16} - \frac{394641417}{884372941} a^{15} + \frac{139771924}{884372941} a^{14} - \frac{322974840}{884372941} a^{13} + \frac{30938985}{884372941} a^{12} - \frac{151298292}{884372941} a^{11} - \frac{112545307}{884372941} a^{10} - \frac{215392746}{884372941} a^{9} + \frac{388285222}{884372941} a^{8} + \frac{64050219}{884372941} a^{7} + \frac{71148378}{884372941} a^{6} + \frac{174835562}{884372941} a^{5} + \frac{438006565}{884372941} a^{4} - \frac{263417180}{884372941} a^{3} + \frac{55954187}{884372941} a^{2} - \frac{704594}{884372941} a - \frac{82193344}{884372941}$, $\frac{1}{237956895637344157879439} a^{19} + \frac{132546192707036}{237956895637344157879439} a^{18} - \frac{23576606896499687087225}{237956895637344157879439} a^{17} + \frac{79078347160117178175112}{237956895637344157879439} a^{16} - \frac{21252820414485752588362}{237956895637344157879439} a^{15} - \frac{2789563297002485215964}{237956895637344157879439} a^{14} - \frac{88839568672317756725202}{237956895637344157879439} a^{13} - \frac{27400280445131474852716}{237956895637344157879439} a^{12} - \frac{90111022790693761137853}{237956895637344157879439} a^{11} - \frac{109735676887127840688256}{237956895637344157879439} a^{10} - \frac{7225421086519220050442}{237956895637344157879439} a^{9} - \frac{45908117503532501277987}{237956895637344157879439} a^{8} + \frac{52166771530386026883881}{237956895637344157879439} a^{7} - \frac{83420678356353414053256}{237956895637344157879439} a^{6} + \frac{41888525907520523954137}{237956895637344157879439} a^{5} - \frac{111861946957203324631331}{237956895637344157879439} a^{4} - \frac{47689514991000219004453}{237956895637344157879439} a^{3} + \frac{90040449429110135583898}{237956895637344157879439} a^{2} + \frac{21424294829096752494343}{237956895637344157879439} a - \frac{41887632459061143439478}{237956895637344157879439}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 8953413920.01 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{20}$ (as 20T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 20
The 20 conjugacy class representatives for $C_{20}$
Character table for $C_{20}$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{20})^+\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ R $20$ R $20$ $20$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ $20$ $20$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$