Normalized defining polynomial
\( x^{20} - 40 x^{18} + 660 x^{16} - 5885 x^{14} + 31140 x^{12} - 100872 x^{10} + 198790 x^{8} - 228585 x^{6} + 139160 x^{4} - 36015 x^{2} + 2401 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1465454101562500000000000000000000=2^{20}\cdot 5^{34}\cdot 7^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{7} a^{10} - \frac{2}{7} a^{8} + \frac{2}{7} a^{6} + \frac{3}{7} a^{4} - \frac{3}{7} a^{2}$, $\frac{1}{7} a^{11} - \frac{2}{7} a^{9} + \frac{2}{7} a^{7} + \frac{3}{7} a^{5} - \frac{3}{7} a^{3}$, $\frac{1}{7} a^{12} - \frac{2}{7} a^{8} + \frac{3}{7} a^{4} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{13} - \frac{2}{7} a^{9} + \frac{3}{7} a^{5} + \frac{1}{7} a^{3}$, $\frac{1}{7} a^{14} + \frac{3}{7} a^{8} + \frac{1}{7} a^{2}$, $\frac{1}{7} a^{15} + \frac{3}{7} a^{9} + \frac{1}{7} a^{3}$, $\frac{1}{49} a^{16} + \frac{2}{49} a^{14} + \frac{2}{49} a^{12} + \frac{2}{49} a^{10} - \frac{17}{49} a^{8} - \frac{16}{49} a^{6} + \frac{4}{49} a^{4}$, $\frac{1}{49} a^{17} + \frac{2}{49} a^{15} + \frac{2}{49} a^{13} + \frac{2}{49} a^{11} - \frac{17}{49} a^{9} - \frac{16}{49} a^{7} + \frac{4}{49} a^{5}$, $\frac{1}{84117251743} a^{18} + \frac{536866563}{84117251743} a^{16} - \frac{4324501270}{84117251743} a^{14} + \frac{3169873380}{84117251743} a^{12} - \frac{2662101053}{84117251743} a^{10} + \frac{19182237002}{84117251743} a^{8} + \frac{3060681873}{84117251743} a^{6} - \frac{3349422292}{12016750249} a^{4} + \frac{131448936}{1716678607} a^{2} - \frac{80588730}{245239801}$, $\frac{1}{84117251743} a^{19} + \frac{536866563}{84117251743} a^{17} - \frac{4324501270}{84117251743} a^{15} + \frac{3169873380}{84117251743} a^{13} - \frac{2662101053}{84117251743} a^{11} + \frac{19182237002}{84117251743} a^{9} + \frac{3060681873}{84117251743} a^{7} - \frac{3349422292}{12016750249} a^{5} + \frac{131448936}{1716678607} a^{3} - \frac{80588730}{245239801} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16358901541.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:C_5$ (as 20T44):
| A solvable group of order 160 |
| The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$ |
| Character table for $C_2\times C_2^4:C_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.390625.1, \(\Q(\zeta_{25})^+\), 10.10.38281250000000000.2, 10.10.7656250000000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.17.1 | $x^{10} - 5 x^{8} + 5$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| 5.10.17.1 | $x^{10} - 5 x^{8} + 5$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |