Normalized defining polynomial
\( x^{20} - x^{19} - 58 x^{18} - 2 x^{17} + 1256 x^{16} + 806 x^{15} - 13678 x^{14} - 14543 x^{13} + 82315 x^{12} + 116040 x^{11} - 275583 x^{10} - 490494 x^{9} + 468538 x^{8} + 1127252 x^{7} - 247384 x^{6} - 1318055 x^{5} - 257359 x^{4} + 631244 x^{3} + 263720 x^{2} - 62207 x - 31319 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(146336862347119602194701496572265625=3^{20}\cdot 5^{10}\cdot 73^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{14} - \frac{2}{5} a^{13} + \frac{2}{5} a^{11} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5}$, $\frac{1}{5} a^{17} + \frac{2}{5} a^{15} - \frac{2}{5} a^{14} + \frac{2}{5} a^{12} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a$, $\frac{1}{221545} a^{18} - \frac{5199}{221545} a^{17} - \frac{4037}{221545} a^{16} - \frac{10625}{44309} a^{15} + \frac{2875}{44309} a^{14} - \frac{9185}{44309} a^{13} - \frac{104978}{221545} a^{12} + \frac{41167}{221545} a^{11} + \frac{9221}{221545} a^{10} - \frac{81931}{221545} a^{9} - \frac{88826}{221545} a^{8} + \frac{34612}{221545} a^{7} - \frac{60169}{221545} a^{6} - \frac{81417}{221545} a^{5} - \frac{16221}{221545} a^{4} + \frac{39602}{221545} a^{3} + \frac{21184}{221545} a^{2} - \frac{109931}{221545} a - \frac{28981}{221545}$, $\frac{1}{1616813101296197129727567048595} a^{19} - \frac{1255138769878179253221144}{1616813101296197129727567048595} a^{18} - \frac{6486259946618138160249845797}{1616813101296197129727567048595} a^{17} - \frac{42156388827414410018255712078}{1616813101296197129727567048595} a^{16} - \frac{127451019851885711858792222099}{323362620259239425945513409719} a^{15} + \frac{142061918707308609982864080914}{1616813101296197129727567048595} a^{14} + \frac{582913754960314467577082722163}{1616813101296197129727567048595} a^{13} - \frac{503010800600904651759135719973}{1616813101296197129727567048595} a^{12} + \frac{66159096084307049433821462555}{323362620259239425945513409719} a^{11} + \frac{642967047212411239110504332529}{1616813101296197129727567048595} a^{10} - \frac{522531514629111733292833386296}{1616813101296197129727567048595} a^{9} + \frac{379142211797858222821117492529}{1616813101296197129727567048595} a^{8} + \frac{87683597280630281903927123717}{1616813101296197129727567048595} a^{7} - \frac{394620719699805458463259151792}{1616813101296197129727567048595} a^{6} - \frac{528162882390638572854213504433}{1616813101296197129727567048595} a^{5} - \frac{414591942662664740726621795354}{1616813101296197129727567048595} a^{4} - \frac{276017149855171437389776206382}{1616813101296197129727567048595} a^{3} + \frac{477885841883019923676201309424}{1616813101296197129727567048595} a^{2} + \frac{113981239576580615140692086004}{1616813101296197129727567048595} a - \frac{381658558749907513534946136047}{1616813101296197129727567048595}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 187583748822 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 48 conjugacy class representatives for t20n277 |
| Character table for t20n277 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.10791225.1, 10.10.382540014047053125.1, 10.10.582252685003125.1, 10.10.76508002809410625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.12.14.6 | $x^{12} + 3 x^{11} + 3 x^{10} - 6 x^{9} + 3 x^{8} + 9 x^{7} + 9 x^{4} + 9 x^{3} + 9$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $73$ | 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.12.10.3 | $x^{12} - 14527 x^{6} + 78021889$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |