Normalized defining polynomial
\( x^{20} - 10 x^{19} - 20 x^{18} + 390 x^{17} - 300 x^{16} - 5210 x^{15} + 9890 x^{14} + 26870 x^{13} - 82520 x^{12} - 22800 x^{11} + 257912 x^{10} - 177160 x^{9} - 222825 x^{8} + 304530 x^{7} - 17950 x^{6} - 112348 x^{5} + 38430 x^{4} + 6000 x^{3} - 3100 x^{2} + 250 x - 5 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(144120025000000000000000000000000000000=2^{30}\cdot 5^{32}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{10} - \frac{2}{5} a^{5}$, $\frac{1}{5} a^{16} + \frac{1}{5} a^{11} - \frac{2}{5} a^{6}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{12} - \frac{2}{5} a^{7}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{13} - \frac{2}{5} a^{8}$, $\frac{1}{3372389841484724867871691957878755} a^{19} + \frac{46154845468847310512005499177979}{674477968296944973574338391575751} a^{18} + \frac{57784908435380719977628424556464}{3372389841484724867871691957878755} a^{17} - \frac{229059293481243205024299143241964}{3372389841484724867871691957878755} a^{16} + \frac{295156289906449800111704912602143}{3372389841484724867871691957878755} a^{15} + \frac{277922538326282028437280280875796}{3372389841484724867871691957878755} a^{14} - \frac{179888564440527496865024764615943}{674477968296944973574338391575751} a^{13} + \frac{816345249265982920686671098105074}{3372389841484724867871691957878755} a^{12} - \frac{117981756623392051542819910796209}{3372389841484724867871691957878755} a^{11} - \frac{417795774068408782329174125399837}{3372389841484724867871691957878755} a^{10} + \frac{299583803375031689259079992804263}{3372389841484724867871691957878755} a^{9} - \frac{25244125992345059326007452736555}{674477968296944973574338391575751} a^{8} - \frac{1347462809014102955342803311209313}{3372389841484724867871691957878755} a^{7} - \frac{612817481989439779448060776732112}{3372389841484724867871691957878755} a^{6} + \frac{1063674912451157910525672826148264}{3372389841484724867871691957878755} a^{5} - \frac{319301125641488197333088874804911}{674477968296944973574338391575751} a^{4} + \frac{276913404820806739446426172072980}{674477968296944973574338391575751} a^{3} - \frac{133293239998776282816461856737103}{674477968296944973574338391575751} a^{2} + \frac{73929518930840694829355913458398}{674477968296944973574338391575751} a + \frac{88731391841842828990646035076259}{674477968296944973574338391575751}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15494663083400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:C_5$ (as 20T23):
| A solvable group of order 80 |
| The 8 conjugacy class representatives for $C_2^4:C_5$ |
| Character table for $C_2^4:C_5$ |
Intermediate fields
| 5.5.390625.1, 10.10.7656250000000000.2, 10.10.7656250000000000.1, 10.10.375156250000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |