Normalized defining polynomial
\( x^{20} - 121 x^{18} + 5932 x^{16} - 152482 x^{14} + 2232986 x^{12} - 19074528 x^{10} + 94432719 x^{8} - 264094303 x^{6} + 392014338 x^{4} - 267981054 x^{2} + 54302161 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(142074815881149027354713197399801593856=2^{20}\cdot 11^{16}\cdot 7369^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 7369$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{8} - \frac{1}{5} a^{4} + \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{9} - \frac{1}{5} a^{5} + \frac{2}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{25} a^{14} + \frac{1}{25} a^{12} + \frac{1}{25} a^{10} + \frac{11}{25} a^{8} - \frac{1}{25} a^{6} - \frac{9}{25} a^{4} - \frac{12}{25} a^{2} + \frac{11}{25}$, $\frac{1}{25} a^{15} + \frac{1}{25} a^{13} + \frac{1}{25} a^{11} + \frac{11}{25} a^{9} - \frac{1}{25} a^{7} - \frac{9}{25} a^{5} - \frac{12}{25} a^{3} + \frac{11}{25} a$, $\frac{1}{125} a^{16} + \frac{2}{125} a^{14} + \frac{2}{125} a^{12} + \frac{37}{125} a^{10} + \frac{12}{25} a^{8} - \frac{7}{25} a^{6} - \frac{21}{125} a^{4} + \frac{24}{125} a^{2} - \frac{14}{125}$, $\frac{1}{125} a^{17} + \frac{2}{125} a^{15} + \frac{2}{125} a^{13} + \frac{37}{125} a^{11} + \frac{12}{25} a^{9} - \frac{7}{25} a^{7} - \frac{21}{125} a^{5} + \frac{24}{125} a^{3} - \frac{14}{125} a$, $\frac{1}{30761674194352989165474257710625} a^{18} + \frac{34716953661664462289545831753}{30761674194352989165474257710625} a^{16} - \frac{311537632674293807187196023371}{30761674194352989165474257710625} a^{14} - \frac{1513252619899973197958648005086}{30761674194352989165474257710625} a^{12} - \frac{11623878804973517654703985340403}{30761674194352989165474257710625} a^{10} + \frac{422377639206352188652459188026}{1230466967774119566618970308425} a^{8} - \frac{10975510994194553568367573659931}{30761674194352989165474257710625} a^{6} - \frac{8328296198652642296268777028622}{30761674194352989165474257710625} a^{4} + \frac{1321771227451673256607008076752}{6152334838870597833094851542125} a^{2} + \frac{453370234748248893491504169}{4174470646539963246773545625}$, $\frac{1}{30761674194352989165474257710625} a^{19} + \frac{34716953661664462289545831753}{30761674194352989165474257710625} a^{17} - \frac{311537632674293807187196023371}{30761674194352989165474257710625} a^{15} - \frac{1513252619899973197958648005086}{30761674194352989165474257710625} a^{13} - \frac{11623878804973517654703985340403}{30761674194352989165474257710625} a^{11} + \frac{422377639206352188652459188026}{1230466967774119566618970308425} a^{9} - \frac{10975510994194553568367573659931}{30761674194352989165474257710625} a^{7} - \frac{8328296198652642296268777028622}{30761674194352989165474257710625} a^{5} + \frac{1321771227451673256607008076752}{6152334838870597833094851542125} a^{3} + \frac{453370234748248893491504169}{4174470646539963246773545625} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4744435151830 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2560 |
| The 28 conjugacy class representatives for t20n254 |
| Character table for t20n254 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.1579610594089.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.3 | $x^{10} - 9 x^{8} + 22 x^{6} - 46 x^{4} + 9 x^{2} - 9$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ |
| 2.10.10.3 | $x^{10} - 9 x^{8} + 22 x^{6} - 46 x^{4} + 9 x^{2} - 9$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 7369 | Data not computed | ||||||