Normalized defining polynomial
\( x^{20} - 2278 x^{18} + 2225780 x^{16} - 1226506384 x^{14} + 421312835904 x^{12} - 93996224024960 x^{10} + 13732302535071360 x^{8} - 1288401536737102336 x^{6} + 73545110298746947584 x^{4} - 2273477282314176759808 x^{2} + 28413322415166317694976 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1389549804808197507073369468751841433841827840000000000=2^{40}\cdot 5^{10}\cdot 13^{4}\cdot 29^{4}\cdot 31^{4}\cdot 1381^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $509.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29, 31, 1381$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{32} a^{9} - \frac{1}{16} a^{7} - \frac{1}{8} a^{5}$, $\frac{1}{44192} a^{10} + \frac{121}{11048} a^{8} - \frac{49}{5524} a^{6} - \frac{101}{2762} a^{4} + \frac{232}{1381} a^{2}$, $\frac{1}{88384} a^{11} + \frac{121}{22096} a^{9} - \frac{49}{11048} a^{7} + \frac{1179}{11048} a^{5} + \frac{116}{1381} a^{3}$, $\frac{1}{244116608} a^{12} - \frac{1139}{122058304} a^{10} + \frac{556445}{61029152} a^{8} - \frac{370209}{15257288} a^{6} + \frac{893739}{7628644} a^{4} + \frac{243}{2762} a^{2}$, $\frac{1}{244116608} a^{13} + \frac{121}{61029152} a^{11} + \frac{890647}{61029152} a^{9} - \frac{218939}{7628644} a^{7} - \frac{398645}{15257288} a^{5} + \frac{475}{2762} a^{3}$, $\frac{1}{674250071296} a^{14} + \frac{121}{168562517824} a^{12} - \frac{508257}{84281258912} a^{10} + \frac{615137247}{84281258912} a^{8} - \frac{128544803}{5267578682} a^{6} - \frac{157887}{3814322} a^{4} - \frac{183}{1381} a^{2}$, $\frac{1}{674250071296} a^{15} + \frac{121}{168562517824} a^{13} + \frac{890647}{168562517824} a^{11} + \frac{1076670209}{84281258912} a^{9} - \frac{607630101}{21070314728} a^{7} + \frac{996651}{15257288} a^{5} - \frac{67}{1381} a^{3}$, $\frac{1}{1862278696919552} a^{16} + \frac{121}{465569674229888} a^{14} + \frac{890647}{465569674229888} a^{12} - \frac{389279783}{58196209278736} a^{10} + \frac{875836590351}{116392418557472} a^{8} + \frac{1056111939}{21070314728} a^{6} + \frac{314801}{3814322} a^{4} + \frac{36}{1381} a^{2}$, $\frac{1}{3724557393839104} a^{17} - \frac{1139}{1862278696919552} a^{15} + \frac{556445}{931139348459776} a^{13} - \frac{76656649}{232784837114944} a^{11} + \frac{6583013061}{58196209278736} a^{9} - \frac{531749095}{21070314728} a^{7} - \frac{961785}{15257288} a^{5} + \frac{219}{2762} a^{3}$, $\frac{1}{2893590723560933465196952188600445053597940736} a^{18} - \frac{33876866939529182931855423603}{1446795361780466732598476094300222526798970368} a^{16} + \frac{385862619448063729862279276309127}{723397680890233366299238047150111263399485184} a^{14} + \frac{169481159557681482384634111642304393}{180849420222558341574809511787527815849871296} a^{12} + \frac{281518003032929029494168227180672805081}{90424710111279170787404755893763907924935648} a^{10} + \frac{3538015457970435579582142940276379185}{120363427651636669383072735940713128707} a^{8} - \frac{614293316788335947850452536699977205}{11853313657221279533742137645139019192} a^{6} - \frac{444093405299007412574799338033611}{4291569028682577673331693571737516} a^{4} + \frac{215273332066837389919604611809}{1553790379682323560221467621918} a^{2} - \frac{225054671685242940463250811}{562559876785779710434999139}$, $\frac{1}{5787181447121866930393904377200890107195881472} a^{19} - \frac{33876866939529182931855423603}{2893590723560933465196952188600445053597940736} a^{17} + \frac{385862619448063729862279276309127}{1446795361780466732598476094300222526798970368} a^{15} + \frac{169481159557681482384634111642304393}{361698840445116683149619023575055631699742592} a^{13} + \frac{281518003032929029494168227180672805081}{180849420222558341574809511787527815849871296} a^{11} + \frac{3538015457970435579582142940276379185}{240726855303273338766145471881426257414} a^{9} + \frac{433685445182161996933657334471200097}{11853313657221279533742137645139019192} a^{7} + \frac{78599856483954625719765506862596}{1072892257170644418332923392934379} a^{5} - \frac{280810928887162195095564599575}{1553790379682323560221467621918} a^{3} + \frac{168752602550268384985874164}{562559876785779710434999139} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 800664910826000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 228 conjugacy class representatives for t20n1028 are not computed |
| Character table for t20n1028 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.109268775200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $13$ | 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.6.4.1 | $x^{6} + 232 x^{3} + 22707$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.10.0.1 | $x^{10} + x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $31$ | $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{31}$ | $x + 7$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.8.0.1 | $x^{8} - x + 22$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 1381 | Data not computed | ||||||