Normalized defining polynomial
\( x^{20} - x^{19} - 74 x^{18} - 8 x^{17} + 2161 x^{16} + 2188 x^{15} - 30387 x^{14} - 53182 x^{13} + 205169 x^{12} + 517750 x^{11} - 537473 x^{10} - 2291342 x^{9} - 343368 x^{8} + 4213355 x^{7} + 3433304 x^{6} - 1687071 x^{5} - 3020232 x^{4} - 1007476 x^{3} + 2500 x^{2} + 17940 x + 529 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(138881946372451702408146629446494920973=3^{10}\cdot 11^{16}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(429=3\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{429}(64,·)$, $\chi_{429}(1,·)$, $\chi_{429}(196,·)$, $\chi_{429}(5,·)$, $\chi_{429}(203,·)$, $\chi_{429}(320,·)$, $\chi_{429}(278,·)$, $\chi_{429}(25,·)$, $\chi_{429}(47,·)$, $\chi_{429}(86,·)$, $\chi_{429}(157,·)$, $\chi_{429}(356,·)$, $\chi_{429}(103,·)$, $\chi_{429}(298,·)$, $\chi_{429}(235,·)$, $\chi_{429}(125,·)$, $\chi_{429}(181,·)$, $\chi_{429}(313,·)$, $\chi_{429}(122,·)$, $\chi_{429}(317,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{23} a^{17} + \frac{1}{23} a^{15} - \frac{7}{23} a^{14} - \frac{2}{23} a^{13} + \frac{5}{23} a^{12} - \frac{11}{23} a^{11} - \frac{10}{23} a^{10} + \frac{2}{23} a^{9} + \frac{8}{23} a^{8} + \frac{11}{23} a^{7} - \frac{4}{23} a^{5} + \frac{4}{23} a^{4} + \frac{5}{23} a^{3} + \frac{8}{23} a^{2} + \frac{5}{23} a$, $\frac{1}{23} a^{18} + \frac{1}{23} a^{16} - \frac{7}{23} a^{15} - \frac{2}{23} a^{14} + \frac{5}{23} a^{13} - \frac{11}{23} a^{12} - \frac{10}{23} a^{11} + \frac{2}{23} a^{10} + \frac{8}{23} a^{9} + \frac{11}{23} a^{8} - \frac{4}{23} a^{6} + \frac{4}{23} a^{5} + \frac{5}{23} a^{4} + \frac{8}{23} a^{3} + \frac{5}{23} a^{2}$, $\frac{1}{261334788618030046408395899190328738989529371233} a^{19} - \frac{1501608622150987724490928468497661184995128869}{261334788618030046408395899190328738989529371233} a^{18} + \frac{122115070631039355155581868674280319453675261}{261334788618030046408395899190328738989529371233} a^{17} + \frac{26684727905042557119422528286752854778005417267}{261334788618030046408395899190328738989529371233} a^{16} - \frac{4652221956501420327723738196974310853472534774}{261334788618030046408395899190328738989529371233} a^{15} - \frac{37401788979079343767968061101809339971749738305}{261334788618030046408395899190328738989529371233} a^{14} + \frac{26492299485223874755144485596265056141899082366}{261334788618030046408395899190328738989529371233} a^{13} - \frac{108244544749041322162469111922597667114594480935}{261334788618030046408395899190328738989529371233} a^{12} + \frac{47196915187298484283851228760496691327052087573}{261334788618030046408395899190328738989529371233} a^{11} + \frac{86646883333486757692342157522075019370239135884}{261334788618030046408395899190328738989529371233} a^{10} + \frac{11448280354625523872364223324325336610876178912}{261334788618030046408395899190328738989529371233} a^{9} + \frac{20084044481348892606784435986265696626040679166}{261334788618030046408395899190328738989529371233} a^{8} + \frac{88360803142170666786138127140160524829108722487}{261334788618030046408395899190328738989529371233} a^{7} + \frac{72183620228358129040182443688367749132295675834}{261334788618030046408395899190328738989529371233} a^{6} - \frac{111828002190882877389509613613365272385389691429}{261334788618030046408395899190328738989529371233} a^{5} - \frac{100238791203652220781941419147153374976137117245}{261334788618030046408395899190328738989529371233} a^{4} - \frac{95828430607812848596180078823053685035351407075}{261334788618030046408395899190328738989529371233} a^{3} + \frac{38398862462746697082400232276793605955466699362}{261334788618030046408395899190328738989529371233} a^{2} - \frac{72224969531283605126655764702461681837493466316}{261334788618030046408395899190328738989529371233} a - \frac{4368243884320833119336013535495074297858081068}{11362382113827393322104169530014292999544755271}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5124246016990 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.19773.1, \(\Q(\zeta_{11})^+\), 10.10.79589952003133.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | $20$ | $20$ | R | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||
| 13 | Data not computed | ||||||