Normalized defining polynomial
\( x^{20} - 8 x^{19} - 15 x^{18} + 303 x^{17} - 555 x^{16} - 3208 x^{15} + 13518 x^{14} - 598 x^{13} - 87741 x^{12} + 161427 x^{11} + 72963 x^{10} - 616042 x^{9} + 772164 x^{8} + 5776 x^{7} - 1098720 x^{6} + 1470208 x^{5} - 1028544 x^{4} + 436608 x^{3} - 112896 x^{2} + 16384 x - 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13759442815773208688023459670194289=13^{2}\cdot 35801^{3}\cdot 36497^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 35801, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{13} + \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{3}{8} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{3}{8} a^{5} + \frac{3}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{14} + \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{3}{16} a^{10} - \frac{1}{2} a^{9} + \frac{3}{8} a^{8} + \frac{1}{8} a^{7} + \frac{3}{16} a^{6} - \frac{5}{16} a^{5} - \frac{5}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{15} + \frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{3}{32} a^{11} - \frac{1}{4} a^{10} - \frac{5}{16} a^{9} + \frac{1}{16} a^{8} - \frac{13}{32} a^{7} - \frac{5}{32} a^{6} - \frac{5}{32} a^{5} - \frac{5}{16} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{16} + \frac{1}{64} a^{14} - \frac{1}{64} a^{13} - \frac{3}{64} a^{12} - \frac{1}{8} a^{11} - \frac{5}{32} a^{10} + \frac{1}{32} a^{9} - \frac{13}{64} a^{8} + \frac{27}{64} a^{7} + \frac{27}{64} a^{6} - \frac{5}{32} a^{5} + \frac{7}{16} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{128} a^{17} + \frac{1}{128} a^{15} - \frac{1}{128} a^{14} - \frac{3}{128} a^{13} - \frac{1}{16} a^{12} - \frac{5}{64} a^{11} - \frac{31}{64} a^{10} - \frac{13}{128} a^{9} + \frac{27}{128} a^{8} + \frac{27}{128} a^{7} - \frac{5}{64} a^{6} - \frac{9}{32} a^{5} - \frac{3}{16} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{3328} a^{18} + \frac{1}{832} a^{17} - \frac{3}{3328} a^{16} + \frac{19}{3328} a^{15} - \frac{11}{3328} a^{14} + \frac{1}{104} a^{13} - \frac{183}{1664} a^{12} - \frac{107}{1664} a^{11} + \frac{451}{3328} a^{10} - \frac{1633}{3328} a^{9} + \frac{1563}{3328} a^{8} - \frac{461}{1664} a^{7} - \frac{153}{416} a^{6} - \frac{23}{208} a^{5} + \frac{1}{52} a^{4} + \frac{3}{13} a^{3} + \frac{1}{52} a^{2} - \frac{5}{13} a - \frac{3}{13}$, $\frac{1}{6656} a^{19} - \frac{19}{6656} a^{17} + \frac{31}{6656} a^{16} - \frac{87}{6656} a^{15} + \frac{19}{1664} a^{14} + \frac{13}{256} a^{13} - \frac{207}{3328} a^{12} - \frac{1189}{6656} a^{11} + \frac{723}{6656} a^{10} - \frac{2721}{6656} a^{9} + \frac{573}{3328} a^{8} + \frac{25}{208} a^{7} + \frac{179}{416} a^{6} - \frac{41}{104} a^{5} - \frac{31}{104} a^{4} - \frac{17}{52} a^{3} + \frac{7}{26} a^{2} + \frac{2}{13} a + \frac{6}{13}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36461727005.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 252 conjugacy class representatives for t20n791 are not computed |
| Character table for t20n791 is not computed |
Intermediate fields
| 5.5.36497.1, 10.10.47688042153209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | $16{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 35801 | Data not computed | ||||||
| 36497 | Data not computed | ||||||