Normalized defining polynomial
\( x^{20} - 90 x^{18} - 40 x^{17} + 2760 x^{16} + 1840 x^{15} - 37030 x^{14} - 33060 x^{13} + 232690 x^{12} + 237960 x^{11} - 680984 x^{10} - 627620 x^{9} + 1085935 x^{8} + 672640 x^{7} - 970350 x^{6} - 197964 x^{5} + 399385 x^{4} - 70720 x^{3} - 20390 x^{2} + 4900 x + 34 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1368902819004704358400000000000000000000=2^{40}\cdot 5^{20}\cdot 97^{2}\cdot 193^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 97, 193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{10} + \frac{2}{5} a^{5} - \frac{1}{5}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{11} + \frac{2}{5} a^{6} - \frac{1}{5} a$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{12} + \frac{2}{5} a^{7} - \frac{1}{5} a^{2}$, $\frac{1}{3062822995} a^{18} + \frac{216120909}{3062822995} a^{17} + \frac{166634872}{3062822995} a^{16} - \frac{221405138}{3062822995} a^{15} + \frac{181111197}{612564599} a^{14} + \frac{877913994}{3062822995} a^{13} + \frac{938900741}{3062822995} a^{12} - \frac{665983497}{3062822995} a^{11} - \frac{461335472}{3062822995} a^{10} + \frac{196989461}{612564599} a^{9} + \frac{1526630657}{3062822995} a^{8} + \frac{361898548}{3062822995} a^{7} - \frac{1385972931}{3062822995} a^{6} + \frac{1032106699}{3062822995} a^{5} + \frac{229797764}{612564599} a^{4} + \frac{865403459}{3062822995} a^{3} + \frac{311083201}{3062822995} a^{2} - \frac{296352187}{3062822995} a + \frac{789602468}{3062822995}$, $\frac{1}{196703260469107247527204015470846985} a^{19} - \frac{16742590986210672926356939}{196703260469107247527204015470846985} a^{18} + \frac{222478432600112919902760265556818}{4574494429514122035516372452810395} a^{17} + \frac{18890881579389682961355384660869489}{196703260469107247527204015470846985} a^{16} + \frac{7900875532419249333424308244820312}{196703260469107247527204015470846985} a^{15} + \frac{88854784083981754734138328636646814}{196703260469107247527204015470846985} a^{14} + \frac{76748669463135609398842618108365839}{196703260469107247527204015470846985} a^{13} + \frac{5944386562166405214109908265856473}{28100465781301035361029145067263855} a^{12} - \frac{89569932953027947021412895610814684}{196703260469107247527204015470846985} a^{11} + \frac{90631827137262418671774646636884003}{196703260469107247527204015470846985} a^{10} + \frac{34918849397566293216150711516981437}{196703260469107247527204015470846985} a^{9} - \frac{98131678662777134131575454850292753}{196703260469107247527204015470846985} a^{8} + \frac{85688604324661899352466596748404658}{196703260469107247527204015470846985} a^{7} + \frac{29327441898458507954616552536656448}{196703260469107247527204015470846985} a^{6} + \frac{48809840189513168084645082536648284}{196703260469107247527204015470846985} a^{5} - \frac{45353049039250757179402604733463401}{196703260469107247527204015470846985} a^{4} - \frac{35048354490576114643963438078669561}{196703260469107247527204015470846985} a^{3} - \frac{24943277655250411418393604860635924}{196703260469107247527204015470846985} a^{2} + \frac{74394093362922742061277755569918166}{196703260469107247527204015470846985} a - \frac{67102796449912484963816017695517457}{196703260469107247527204015470846985}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33017072432200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 204800 |
| The 116 conjugacy class representatives for t20n872 are not computed |
| Character table for t20n872 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.11919680000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.10.9 | $x^{10} + 10 x^{8} + 10 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 17$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ |
| 5.10.10.9 | $x^{10} + 10 x^{8} + 10 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 17$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| 97 | Data not computed | ||||||
| $193$ | $\Q_{193}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{193}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 193.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 193.4.2.2 | $x^{4} - 193 x^{2} + 186245$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 193.4.2.2 | $x^{4} - 193 x^{2} + 186245$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 193.8.0.1 | $x^{8} - x + 5$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |