Normalized defining polynomial
\( x^{20} - x^{19} - 114 x^{18} + 146 x^{17} + 5261 x^{16} - 8086 x^{15} - 127004 x^{14} + 222110 x^{13} + 1735841 x^{12} - 3298366 x^{11} - 13694442 x^{10} + 27051188 x^{9} + 61475933 x^{8} - 119264556 x^{7} - 150754758 x^{6} + 255705133 x^{5} + 192822823 x^{4} - 201595569 x^{3} - 116462395 x^{2} + 511167 x + 667999 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(135771574581801796990925087530670166015625=5^{16}\cdot 11^{6}\cdot 71^{8}\cdot 167^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $113.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 71, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{25} a^{15} - \frac{1}{25} a^{14} + \frac{1}{25} a^{13} - \frac{4}{25} a^{12} + \frac{1}{25} a^{11} - \frac{4}{25} a^{10} - \frac{1}{25} a^{9} - \frac{3}{25} a^{8} - \frac{12}{25} a^{7} + \frac{6}{25} a^{6} + \frac{11}{25} a^{4} - \frac{8}{25} a^{3} - \frac{1}{5} a^{2} - \frac{11}{25} a + \frac{3}{25}$, $\frac{1}{25} a^{16} - \frac{3}{25} a^{13} - \frac{3}{25} a^{12} - \frac{3}{25} a^{11} - \frac{1}{5} a^{10} - \frac{4}{25} a^{9} + \frac{2}{5} a^{8} - \frac{6}{25} a^{7} + \frac{6}{25} a^{6} + \frac{11}{25} a^{5} + \frac{3}{25} a^{4} + \frac{12}{25} a^{3} + \frac{9}{25} a^{2} - \frac{8}{25} a + \frac{3}{25}$, $\frac{1}{25} a^{17} - \frac{3}{25} a^{14} - \frac{3}{25} a^{13} - \frac{3}{25} a^{12} - \frac{1}{5} a^{11} - \frac{4}{25} a^{10} + \frac{2}{5} a^{9} - \frac{6}{25} a^{8} + \frac{6}{25} a^{7} + \frac{11}{25} a^{6} + \frac{3}{25} a^{5} + \frac{12}{25} a^{4} + \frac{9}{25} a^{3} - \frac{8}{25} a^{2} + \frac{3}{25} a$, $\frac{1}{725} a^{18} + \frac{9}{725} a^{17} - \frac{14}{725} a^{16} + \frac{9}{725} a^{15} - \frac{67}{725} a^{14} + \frac{324}{725} a^{13} + \frac{237}{725} a^{12} - \frac{44}{145} a^{11} + \frac{71}{725} a^{10} + \frac{228}{725} a^{9} - \frac{349}{725} a^{8} - \frac{24}{145} a^{7} - \frac{52}{145} a^{6} + \frac{12}{145} a^{5} + \frac{32}{725} a^{4} - \frac{316}{725} a^{3} - \frac{41}{145} a^{2} + \frac{8}{25} a + \frac{19}{725}$, $\frac{1}{822412807316209040336118268434122088930983061471371689266125} a^{19} + \frac{280701266381584075480122657238986588550233553008787652431}{822412807316209040336118268434122088930983061471371689266125} a^{18} - \frac{9920937571032199986383346349424937877779113541610414332377}{822412807316209040336118268434122088930983061471371689266125} a^{17} + \frac{14425339494036217363405215127377270006353694245892985744742}{822412807316209040336118268434122088930983061471371689266125} a^{16} + \frac{592047086443326396753405066254172451154291714905698796356}{32896512292648361613444730737364883557239322458854867570645} a^{15} - \frac{336586661956756769059712605992742395166007484326631112069186}{822412807316209040336118268434122088930983061471371689266125} a^{14} - \frac{18056093627865512096033515578995617039909569080257817775731}{822412807316209040336118268434122088930983061471371689266125} a^{13} + \frac{290572295341967338123857177955550009288013741986239462205003}{822412807316209040336118268434122088930983061471371689266125} a^{12} + \frac{267056293107223951507649065716839467932226347753681007363682}{822412807316209040336118268434122088930983061471371689266125} a^{11} - \frac{127820628450561449872326495419060391343381344950563795238772}{822412807316209040336118268434122088930983061471371689266125} a^{10} + \frac{290477165539951118774082858236795482735649343571350704579124}{822412807316209040336118268434122088930983061471371689266125} a^{9} + \frac{81233588624012264887513228828032154833801470415277436579221}{822412807316209040336118268434122088930983061471371689266125} a^{8} - \frac{29524896670796168436094128095291687303591910527040377004468}{164482561463241808067223653686824417786196612294274337853225} a^{7} + \frac{343870202658976249925284874635844096931852396544829325103054}{822412807316209040336118268434122088930983061471371689266125} a^{6} + \frac{50521617827945719794541413557349685009868123159723544928374}{164482561463241808067223653686824417786196612294274337853225} a^{5} - \frac{363818931077958685224758012195421339367090816882138694564812}{822412807316209040336118268434122088930983061471371689266125} a^{4} + \frac{146253249735958031701315346273659647899374905819692057048959}{822412807316209040336118268434122088930983061471371689266125} a^{3} - \frac{188398595107180839990615741969374433382445880197047109466491}{822412807316209040336118268434122088930983061471371689266125} a^{2} - \frac{283913718942889048926566941082738914984507209873631975563622}{822412807316209040336118268434122088930983061471371689266125} a - \frac{21453401949182962594858691355837436197731266907138551152627}{822412807316209040336118268434122088930983061471371689266125}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 305719599246000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 928972800 |
| The 139 conjugacy class representatives for t20n1100 are not computed |
| Character table for t20n1100 is not computed |
Intermediate fields
| 10.10.6645000909765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $18{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | $18{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $18{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.5.8.7 | $x^{5} + 10 x^{4} + 5$ | $5$ | $1$ | $8$ | $F_5$ | $[2]^{4}$ | |
| 5.5.8.7 | $x^{5} + 10 x^{4} + 5$ | $5$ | $1$ | $8$ | $F_5$ | $[2]^{4}$ | |
| $11$ | 11.8.6.3 | $x^{8} - 11 x^{4} + 847$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
| 11.12.0.1 | $x^{12} - x + 7$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $71$ | 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.8.4.2 | $x^{8} - 357911 x^{2} + 279528491$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| $167$ | $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 167.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 167.8.4.1 | $x^{8} + 3346680 x^{4} - 4657463 x^{2} + 2800066755600$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |