Normalized defining polynomial
\( x^{20} - 10 x^{19} - 45 x^{18} + 690 x^{17} + 255 x^{16} - 18970 x^{15} + 17675 x^{14} + 269325 x^{13} - 405450 x^{12} - 2157325 x^{11} + 3803273 x^{10} + 10037010 x^{9} - 18164180 x^{8} - 27345215 x^{7} + 44354270 x^{6} + 45162920 x^{5} - 49287350 x^{4} - 48627275 x^{3} + 16874650 x^{2} + 25430025 x + 6117451 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1348081107066867047182181694339752197265625=3^{14}\cdot 5^{18}\cdot 43^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $127.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{3} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{10} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{8} - \frac{1}{10} a^{6} - \frac{1}{10} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{2} a^{2} - \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{11} - \frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{2}{5} a^{6} + \frac{1}{10} a^{5} + \frac{1}{10} a^{3} + \frac{1}{10} a^{2} + \frac{3}{10} a - \frac{1}{10}$, $\frac{1}{100} a^{12} - \frac{1}{25} a^{11} - \frac{3}{100} a^{10} + \frac{1}{50} a^{9} + \frac{2}{25} a^{8} + \frac{1}{50} a^{7} - \frac{21}{50} a^{6} + \frac{17}{100} a^{5} - \frac{27}{100} a^{4} - \frac{3}{100} a^{3} - \frac{9}{50} a^{2} + \frac{11}{100} a - \frac{19}{100}$, $\frac{1}{100} a^{13} + \frac{1}{100} a^{11} + \frac{3}{50} a^{9} + \frac{1}{25} a^{8} + \frac{3}{50} a^{7} - \frac{21}{100} a^{6} + \frac{11}{100} a^{5} + \frac{49}{100} a^{4} - \frac{1}{2} a^{3} + \frac{49}{100} a^{2} + \frac{1}{4} a - \frac{3}{50}$, $\frac{1}{200} a^{14} - \frac{1}{200} a^{13} - \frac{7}{200} a^{11} + \frac{9}{200} a^{10} + \frac{2}{25} a^{9} - \frac{2}{25} a^{8} - \frac{19}{200} a^{7} - \frac{23}{100} a^{6} - \frac{89}{200} a^{5} + \frac{1}{25} a^{4} + \frac{3}{50} a^{3} + \frac{21}{50} a^{2} + \frac{11}{25} a - \frac{13}{40}$, $\frac{1}{200} a^{15} - \frac{1}{200} a^{13} - \frac{1}{200} a^{12} - \frac{1}{100} a^{11} + \frac{7}{200} a^{10} + \frac{3}{50} a^{9} - \frac{7}{200} a^{8} + \frac{7}{200} a^{7} + \frac{93}{200} a^{6} - \frac{79}{200} a^{5} + \frac{29}{100} a^{4} + \frac{49}{100} a^{3} + \frac{1}{50} a^{2} - \frac{11}{200} a - \frac{79}{200}$, $\frac{1}{6000} a^{16} + \frac{1}{1000} a^{15} + \frac{1}{600} a^{13} + \frac{7}{3000} a^{11} - \frac{1}{6000} a^{10} - \frac{11}{240} a^{9} - \frac{13}{400} a^{8} + \frac{1}{30} a^{7} + \frac{253}{2000} a^{6} - \frac{691}{6000} a^{5} + \frac{1}{3} a^{4} - \frac{13}{75} a^{3} - \frac{109}{240} a^{2} + \frac{1201}{6000} a - \frac{2039}{6000}$, $\frac{1}{6000} a^{17} - \frac{1}{1000} a^{15} + \frac{1}{600} a^{14} - \frac{1}{200} a^{13} - \frac{1}{375} a^{12} - \frac{17}{1200} a^{11} - \frac{59}{6000} a^{10} - \frac{3}{80} a^{9} + \frac{1}{30} a^{8} + \frac{43}{2000} a^{7} + \frac{457}{1200} a^{6} - \frac{91}{1500} a^{5} + \frac{1}{150} a^{4} - \frac{269}{1200} a^{3} + \frac{2611}{6000} a^{2} - \frac{83}{240} a + \frac{48}{125}$, $\frac{1}{60000} a^{18} + \frac{1}{20000} a^{17} + \frac{1}{20000} a^{16} - \frac{11}{15000} a^{15} - \frac{3}{2000} a^{14} - \frac{17}{7500} a^{13} - \frac{103}{60000} a^{12} - \frac{1219}{30000} a^{11} - \frac{157}{20000} a^{10} + \frac{221}{6000} a^{9} + \frac{97}{5000} a^{8} - \frac{371}{7500} a^{7} + \frac{589}{7500} a^{6} - \frac{1871}{60000} a^{5} + \frac{4831}{12000} a^{4} - \frac{3163}{7500} a^{3} - \frac{15707}{60000} a^{2} - \frac{667}{10000} a - \frac{7113}{20000}$, $\frac{1}{2397086056599693812700000} a^{19} - \frac{2436672134074020323}{1198543028299846906350000} a^{18} - \frac{11761094488660433897}{1198543028299846906350000} a^{17} - \frac{114177273587040827491}{2397086056599693812700000} a^{16} - \frac{1137527374055225624117}{1198543028299846906350000} a^{15} + \frac{396340220750999542187}{1198543028299846906350000} a^{14} + \frac{6374232108744300778261}{2397086056599693812700000} a^{13} + \frac{1392935951007131256203}{799028685533231270900000} a^{12} - \frac{71680006725845466374359}{2397086056599693812700000} a^{11} + \frac{10008984592174015438313}{799028685533231270900000} a^{10} - \frac{28007911456174835133797}{299635757074961726587500} a^{9} - \frac{4525140727680908288123}{49939292845826954431250} a^{8} + \frac{57826214290446732077647}{1198543028299846906350000} a^{7} - \frac{276133567383007330300903}{799028685533231270900000} a^{6} + \frac{283648129967639080351067}{1198543028299846906350000} a^{5} - \frac{75485530530391260877833}{799028685533231270900000} a^{4} - \frac{1089179725726314733919761}{2397086056599693812700000} a^{3} - \frac{231768390535645502105203}{799028685533231270900000} a^{2} - \frac{226581748392336989380797}{799028685533231270900000} a - \frac{86419601908264825405289}{2397086056599693812700000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2777762864880000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:Q_8$ (as 20T47):
| A solvable group of order 200 |
| The 8 conjugacy class representatives for $C_5^2:Q_8$ |
| Character table for $C_5^2:Q_8$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{129}) \), \(\Q(\sqrt{645}) \), \(\Q(\sqrt{5}, \sqrt{129})\), 10.10.232213790035550390625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.10.11.1 | $x^{10} + 20 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $43$ | 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 43.8.6.2 | $x^{8} + 215 x^{4} + 16641$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 43.8.6.2 | $x^{8} + 215 x^{4} + 16641$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |