Properties

Label 20.20.1256906660...8944.2
Degree $20$
Signature $[20, 0]$
Discriminant $2^{30}\cdot 11^{18}\cdot 1451^{2}$
Root discriminant $50.70$
Ramified primes $2, 11, 1451$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T262

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![150173, -447034, -1234282, 1298692, 2874345, -1467848, -3153426, 779496, 1918052, -175274, -686190, -2200, 146699, 7872, -18748, -1312, 1411, 86, -58, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 - 58*x^18 + 86*x^17 + 1411*x^16 - 1312*x^15 - 18748*x^14 + 7872*x^13 + 146699*x^12 - 2200*x^11 - 686190*x^10 - 175274*x^9 + 1918052*x^8 + 779496*x^7 - 3153426*x^6 - 1467848*x^5 + 2874345*x^4 + 1298692*x^3 - 1234282*x^2 - 447034*x + 150173)
 
gp: K = bnfinit(x^20 - 2*x^19 - 58*x^18 + 86*x^17 + 1411*x^16 - 1312*x^15 - 18748*x^14 + 7872*x^13 + 146699*x^12 - 2200*x^11 - 686190*x^10 - 175274*x^9 + 1918052*x^8 + 779496*x^7 - 3153426*x^6 - 1467848*x^5 + 2874345*x^4 + 1298692*x^3 - 1234282*x^2 - 447034*x + 150173, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} - 58 x^{18} + 86 x^{17} + 1411 x^{16} - 1312 x^{15} - 18748 x^{14} + 7872 x^{13} + 146699 x^{12} - 2200 x^{11} - 686190 x^{10} - 175274 x^{9} + 1918052 x^{8} + 779496 x^{7} - 3153426 x^{6} - 1467848 x^{5} + 2874345 x^{4} + 1298692 x^{3} - 1234282 x^{2} - 447034 x + 150173 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[20, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(12569066605710630176407970532818944=2^{30}\cdot 11^{18}\cdot 1451^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $50.70$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 1451$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{4622416655471866688418555035869727} a^{19} + \frac{715226105381047814600563905988922}{4622416655471866688418555035869727} a^{18} - \frac{382101336734451242298892680177065}{4622416655471866688418555035869727} a^{17} - \frac{904792875790838676058933073850766}{4622416655471866688418555035869727} a^{16} + \frac{1626704058945221007980696671117255}{4622416655471866688418555035869727} a^{15} - \frac{1369190748129232772996338953374327}{4622416655471866688418555035869727} a^{14} - \frac{401928427049152667380516951673949}{4622416655471866688418555035869727} a^{13} - \frac{941296096519193674939854150206531}{4622416655471866688418555035869727} a^{12} + \frac{1203755110460084861707900121735175}{4622416655471866688418555035869727} a^{11} - \frac{1836430902841214773808223829248759}{4622416655471866688418555035869727} a^{10} + \frac{796282771628945847114033360607117}{4622416655471866688418555035869727} a^{9} + \frac{560592088050110084127198045347733}{4622416655471866688418555035869727} a^{8} + \frac{426890152107454257234874950468003}{4622416655471866688418555035869727} a^{7} + \frac{130188259647188165801537281414963}{4622416655471866688418555035869727} a^{6} + \frac{2240349909429889252556257805747450}{4622416655471866688418555035869727} a^{5} + \frac{1796251247115401662917746871451971}{4622416655471866688418555035869727} a^{4} + \frac{1013950202409313293514137816660113}{4622416655471866688418555035869727} a^{3} - \frac{215187587116804696098364945086740}{4622416655471866688418555035869727} a^{2} - \frac{1775403257173958847136222622089466}{4622416655471866688418555035869727} a + \frac{2050941573431462777435776294768313}{4622416655471866688418555035869727}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 43178494373.9 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T262:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2560
The 40 conjugacy class representatives for t20n262
Character table for t20n262 is not computed

Intermediate fields

\(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 32 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
1451Data not computed