Normalized defining polynomial
\( x^{20} - 4 x^{19} - 56 x^{18} + 160 x^{17} + 1170 x^{16} - 2560 x^{15} - 12444 x^{14} + 21818 x^{13} + 74182 x^{12} - 109934 x^{11} - 249732 x^{10} + 338096 x^{9} + 438377 x^{8} - 612082 x^{7} - 292220 x^{6} + 552758 x^{5} - 59820 x^{4} - 128586 x^{3} + 37814 x^{2} + 3666 x - 1583 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12569066605710630176407970532818944=2^{30}\cdot 11^{18}\cdot 1451^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 1451$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{43} a^{18} + \frac{5}{43} a^{17} + \frac{10}{43} a^{16} + \frac{11}{43} a^{15} + \frac{17}{43} a^{14} + \frac{17}{43} a^{13} + \frac{20}{43} a^{12} - \frac{5}{43} a^{11} - \frac{5}{43} a^{10} - \frac{4}{43} a^{9} - \frac{11}{43} a^{7} - \frac{21}{43} a^{6} - \frac{10}{43} a^{5} - \frac{7}{43} a^{4} + \frac{21}{43} a^{3} - \frac{8}{43} a^{2} + \frac{9}{43} a + \frac{16}{43}$, $\frac{1}{292957280242035146135032959375767} a^{19} - \frac{1563340395470941501756488639932}{292957280242035146135032959375767} a^{18} + \frac{131454731143478366415036189871048}{292957280242035146135032959375767} a^{17} + \frac{49957603088187878733478454212584}{292957280242035146135032959375767} a^{16} - \frac{105564730274892807077389522700468}{292957280242035146135032959375767} a^{15} + \frac{84850712277839130109834590054662}{292957280242035146135032959375767} a^{14} + \frac{102741306569814470685912993309386}{292957280242035146135032959375767} a^{13} + \frac{91784003245098212471391098263406}{292957280242035146135032959375767} a^{12} - \frac{136627602076444269571469074945510}{292957280242035146135032959375767} a^{11} + \frac{39301916015689565032244442649890}{292957280242035146135032959375767} a^{10} - \frac{111828494832791584989302070086423}{292957280242035146135032959375767} a^{9} - \frac{54458138490342423892487142743578}{292957280242035146135032959375767} a^{8} - \frac{45886612601747487481745325206447}{292957280242035146135032959375767} a^{7} - \frac{109790753470371641756876727950476}{292957280242035146135032959375767} a^{6} - \frac{142302410648017849223027220204237}{292957280242035146135032959375767} a^{5} - \frac{83245912914943759355941739214341}{292957280242035146135032959375767} a^{4} - \frac{83201645965470100579057474744783}{292957280242035146135032959375767} a^{3} - \frac{91709610097033862840814018831152}{292957280242035146135032959375767} a^{2} - \frac{74717043747090276633296740826598}{292957280242035146135032959375767} a - \frac{14821694040281756758458075189411}{292957280242035146135032959375767}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46268761767.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2560 |
| The 40 conjugacy class representatives for t20n262 |
| Character table for t20n262 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 1451 | Data not computed | ||||||