Normalized defining polynomial
\( x^{20} - 77 x^{18} + 2475 x^{16} - 43054 x^{14} + 439496 x^{12} - 2669912 x^{10} + 9338864 x^{8} - 17142880 x^{6} + 13155456 x^{4} - 1740160 x^{2} + 6400 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(125265573758493326836079165440000000000=2^{24}\cdot 5^{10}\cdot 967^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 967$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{4} a^{5}$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{8} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{352} a^{14} + \frac{5}{352} a^{12} - \frac{19}{352} a^{10} - \frac{1}{8} a^{8} - \frac{5}{44} a^{6} - \frac{9}{44} a^{4} - \frac{9}{22} a^{2} - \frac{5}{11}$, $\frac{1}{352} a^{15} + \frac{5}{352} a^{13} - \frac{19}{352} a^{11} - \frac{1}{8} a^{9} - \frac{5}{44} a^{7} - \frac{9}{44} a^{5} - \frac{9}{22} a^{3} - \frac{5}{11} a$, $\frac{1}{3520} a^{16} - \frac{3}{3520} a^{14} + \frac{73}{3520} a^{12} - \frac{7}{220} a^{10} + \frac{67}{880} a^{8} - \frac{7}{88} a^{6} - \frac{3}{110} a^{4} - \frac{1}{2} a^{3} + \frac{53}{110} a^{2} + \frac{4}{11}$, $\frac{1}{3520} a^{17} - \frac{3}{3520} a^{15} + \frac{73}{3520} a^{13} - \frac{7}{220} a^{11} + \frac{67}{880} a^{9} - \frac{7}{88} a^{7} - \frac{3}{110} a^{5} - \frac{1}{55} a^{3} - \frac{1}{2} a^{2} + \frac{4}{11} a$, $\frac{1}{158675069832583040} a^{18} + \frac{6655939612583}{158675069832583040} a^{16} - \frac{761432970269}{31735013966516608} a^{14} - \frac{2133259031191637}{79337534916291520} a^{12} + \frac{106558391816307}{1803125793552080} a^{10} + \frac{1350309864678091}{19834383729072880} a^{8} + \frac{196375873303188}{1239648983067055} a^{6} - \frac{34749894930851}{495859593226822} a^{4} - \frac{1}{2} a^{3} + \frac{307128261468469}{2479297966134110} a^{2} - \frac{1484876114608}{247929796613411}$, $\frac{1}{793375349162915200} a^{19} + \frac{6655939612583}{793375349162915200} a^{17} + \frac{17878971341467}{31735013966516608} a^{15} - \frac{5964901342489807}{396687674581457600} a^{13} - \frac{7234821158286671}{198343837290728800} a^{11} + \frac{2506963186536869}{24792979661341100} a^{9} - \frac{8233489516013931}{49585959322682200} a^{7} - \frac{254035207869136}{1239648983067055} a^{5} - \frac{353564998702288}{6198244915335275} a^{3} + \frac{133749558401798}{1239648983067055} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25566000123300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1920 |
| The 18 conjugacy class representatives for t20n226 |
| Character table for t20n226 |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.4675445.1, 10.10.11192210405388800000.1, 10.10.89537683243110400.1, 10.10.2732473243503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.8.12.8 | $x^{8} + 2 x^{6} + 80$ | $2$ | $4$ | $12$ | $(C_8:C_2):C_2$ | $[2, 2, 3]^{4}$ | |
| 2.8.12.8 | $x^{8} + 2 x^{6} + 80$ | $2$ | $4$ | $12$ | $(C_8:C_2):C_2$ | $[2, 2, 3]^{4}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 967 | Data not computed | ||||||