Normalized defining polynomial
\( x^{20} - x^{19} - 48 x^{18} + 35 x^{17} + 774 x^{16} - 403 x^{15} - 5434 x^{14} + 1971 x^{13} + 17945 x^{12} - 4390 x^{11} - 27500 x^{10} + 4390 x^{9} + 17945 x^{8} - 1971 x^{7} - 5434 x^{6} + 403 x^{5} + 774 x^{4} - 35 x^{3} - 48 x^{2} + x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12165018069685667093786785275365009=13^{2}\cdot 34361^{3}\cdot 36497^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 34361, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{3}{8} a^{2} - \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{6} - \frac{1}{8} a^{3} + \frac{1}{8}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{7} - \frac{1}{8} a^{4} + \frac{1}{8} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{1}{16} a^{7} + \frac{1}{16} a^{6} + \frac{3}{16} a^{5} - \frac{3}{16} a^{4} - \frac{3}{16} a^{3} - \frac{3}{16} a^{2} + \frac{3}{16} a + \frac{3}{16}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{6} + \frac{1}{16}$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{7} + \frac{1}{16} a$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{13} - \frac{1}{64} a^{12} - \frac{1}{32} a^{8} - \frac{3}{32} a^{7} + \frac{1}{32} a^{6} + \frac{17}{64} a^{2} - \frac{9}{64} a - \frac{17}{64}$, $\frac{1}{128} a^{15} - \frac{1}{64} a^{13} + \frac{3}{128} a^{12} + \frac{3}{64} a^{9} - \frac{1}{16} a^{8} - \frac{1}{32} a^{7} - \frac{7}{64} a^{6} - \frac{23}{128} a^{3} - \frac{7}{16} a^{2} - \frac{13}{64} a + \frac{27}{128}$, $\frac{1}{512} a^{16} - \frac{1}{512} a^{15} + \frac{1}{256} a^{14} - \frac{15}{512} a^{13} + \frac{9}{512} a^{12} - \frac{13}{256} a^{10} + \frac{1}{256} a^{9} - \frac{1}{128} a^{8} + \frac{31}{256} a^{7} - \frac{13}{256} a^{6} - \frac{1}{4} a^{5} - \frac{55}{512} a^{4} + \frac{79}{512} a^{3} + \frac{49}{256} a^{2} - \frac{127}{512} a + \frac{193}{512}$, $\frac{1}{1024} a^{17} + \frac{1}{1024} a^{15} + \frac{3}{1024} a^{14} - \frac{11}{512} a^{13} + \frac{25}{1024} a^{12} - \frac{13}{512} a^{11} + \frac{5}{128} a^{10} + \frac{31}{512} a^{9} + \frac{13}{512} a^{8} + \frac{1}{256} a^{7} + \frac{3}{512} a^{6} + \frac{73}{1024} a^{5} + \frac{27}{128} a^{4} + \frac{113}{1024} a^{3} - \frac{13}{1024} a^{2} - \frac{199}{512} a - \frac{239}{1024}$, $\frac{1}{53248} a^{18} + \frac{15}{53248} a^{17} + \frac{37}{53248} a^{16} - \frac{17}{26624} a^{15} + \frac{319}{53248} a^{14} - \frac{65}{4096} a^{13} + \frac{1489}{53248} a^{12} - \frac{239}{26624} a^{11} - \frac{9}{26624} a^{10} - \frac{119}{13312} a^{9} + \frac{1309}{26624} a^{8} - \frac{2371}{26624} a^{7} - \frac{4453}{53248} a^{6} - \frac{677}{4096} a^{5} - \frac{10147}{53248} a^{4} - \frac{3761}{26624} a^{3} + \frac{14679}{53248} a^{2} + \frac{5475}{53248} a + \frac{25427}{53248}$, $\frac{1}{106496} a^{19} + \frac{5}{26624} a^{17} + \frac{35}{106496} a^{16} + \frac{413}{106496} a^{15} - \frac{215}{53248} a^{14} - \frac{775}{26624} a^{13} - \frac{2013}{106496} a^{12} + \frac{109}{6656} a^{11} + \frac{2601}{53248} a^{10} - \frac{1361}{53248} a^{9} + \frac{1373}{26624} a^{8} + \frac{489}{8192} a^{7} + \frac{4869}{53248} a^{6} - \frac{5673}{26624} a^{5} - \frac{17765}{106496} a^{4} - \frac{12683}{106496} a^{3} - \frac{9907}{53248} a^{2} - \frac{4533}{53248} a - \frac{47773}{106496}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46029226385.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 252 conjugacy class representatives for t20n791 are not computed |
| Character table for t20n791 is not computed |
Intermediate fields
| 5.5.36497.1, 10.10.45769917500249.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 34361 | Data not computed | ||||||
| 36497 | Data not computed | ||||||