Normalized defining polynomial
\( x^{20} - 120 x^{18} + 6120 x^{16} - 151 x^{15} - 172800 x^{14} + 13590 x^{13} + 2948400 x^{12} - 489240 x^{11} - 31120079 x^{10} + 8969400 x^{9} + 199252740 x^{8} - 88063200 x^{7} - 720099540 x^{6} + 442743929 x^{5} + 1223413200 x^{4} - 953469870 x^{3} - 520959600 x^{2} + 437027220 x - 64286399 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(120567015877601807005703449249267578125=5^{35}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(575=5^{2}\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{575}(1,·)$, $\chi_{575}(68,·)$, $\chi_{575}(137,·)$, $\chi_{575}(139,·)$, $\chi_{575}(461,·)$, $\chi_{575}(528,·)$, $\chi_{575}(22,·)$, $\chi_{575}(24,·)$, $\chi_{575}(346,·)$, $\chi_{575}(413,·)$, $\chi_{575}(482,·)$, $\chi_{575}(484,·)$, $\chi_{575}(231,·)$, $\chi_{575}(298,·)$, $\chi_{575}(367,·)$, $\chi_{575}(369,·)$, $\chi_{575}(116,·)$, $\chi_{575}(183,·)$, $\chi_{575}(252,·)$, $\chi_{575}(254,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{19} a^{10} - \frac{3}{19} a^{8} + \frac{6}{19} a^{6} - \frac{9}{19} a^{5} - \frac{8}{19} a^{4} + \frac{4}{19} a^{3} + \frac{5}{19} a^{2} - \frac{5}{19} a - \frac{5}{19}$, $\frac{1}{19} a^{11} - \frac{3}{19} a^{9} + \frac{6}{19} a^{7} - \frac{9}{19} a^{6} - \frac{8}{19} a^{5} + \frac{4}{19} a^{4} + \frac{5}{19} a^{3} - \frac{5}{19} a^{2} - \frac{5}{19} a$, $\frac{1}{19} a^{12} - \frac{3}{19} a^{8} - \frac{9}{19} a^{7} - \frac{9}{19} a^{6} - \frac{4}{19} a^{5} + \frac{7}{19} a^{3} - \frac{9}{19} a^{2} + \frac{4}{19} a + \frac{4}{19}$, $\frac{1}{920550931} a^{13} - \frac{9403020}{920550931} a^{12} - \frac{78}{920550931} a^{11} - \frac{1283246}{920550931} a^{10} + \frac{2340}{920550931} a^{9} + \frac{83097691}{920550931} a^{8} + \frac{15298242}{48450049} a^{7} + \frac{295580079}{920550931} a^{6} + \frac{339386215}{920550931} a^{5} + \frac{390432882}{920550931} a^{4} - \frac{388308008}{920550931} a^{3} + \frac{340244942}{920550931} a^{2} - \frac{386993864}{920550931} a - \frac{420265291}{920550931}$, $\frac{1}{920550931} a^{14} - \frac{84}{920550931} a^{12} - \frac{7968071}{920550931} a^{11} + \frac{2772}{920550931} a^{10} - \frac{18221484}{48450049} a^{9} - \frac{45360}{920550931} a^{8} + \frac{411638717}{920550931} a^{7} + \frac{387981416}{920550931} a^{6} + \frac{110972955}{920550931} a^{5} + \frac{337626247}{920550931} a^{4} - \frac{32626502}{920550931} a^{3} - \frac{191514052}{920550931} a^{2} + \frac{446132214}{920550931} a - \frac{559872}{920550931}$, $\frac{1}{920550931} a^{15} - \frac{22620967}{920550931} a^{12} - \frac{3780}{920550931} a^{11} - \frac{17950419}{920550931} a^{10} + \frac{151200}{920550931} a^{9} + \frac{75887362}{920550931} a^{8} + \frac{336700903}{920550931} a^{7} + \frac{327074699}{920550931} a^{6} - \frac{272411142}{920550931} a^{5} - \frac{182297734}{920550931} a^{4} + \frac{136646596}{920550931} a^{3} + \frac{295828285}{920550931} a^{2} - \frac{288761863}{920550931} a - \frac{321349066}{920550931}$, $\frac{1}{920550931} a^{16} - \frac{4320}{920550931} a^{12} + \frac{10265968}{920550931} a^{11} + \frac{190080}{920550931} a^{10} - \frac{237653709}{920550931} a^{9} - \frac{3499200}{920550931} a^{8} - \frac{128908906}{920550931} a^{7} - \frac{113997315}{920550931} a^{6} + \frac{5684463}{920550931} a^{5} - \frac{372887045}{920550931} a^{4} + \frac{313282282}{920550931} a^{3} - \frac{186046472}{920550931} a^{2} + \frac{328148180}{920550931} a - \frac{50388480}{920550931}$, $\frac{1}{920550931} a^{17} - \frac{9639370}{920550931} a^{12} - \frac{146880}{920550931} a^{11} - \frac{15720598}{920550931} a^{10} + \frac{6609600}{920550931} a^{9} - \frac{258646974}{920550931} a^{8} - \frac{17313790}{920550931} a^{7} - \frac{231665897}{920550931} a^{6} + \frac{452279799}{920550931} a^{5} + \frac{437126832}{920550931} a^{4} + \frac{293905985}{920550931} a^{3} + \frac{405611156}{920550931} a^{2} - \frac{46490166}{920550931} a - \frac{122721090}{920550931}$, $\frac{1}{920550931} a^{18} - \frac{176256}{920550931} a^{12} + \frac{7609326}{920550931} a^{11} + \frac{8724672}{920550931} a^{10} - \frac{280244008}{920550931} a^{9} - \frac{171320832}{920550931} a^{8} + \frac{447551765}{920550931} a^{7} - \frac{242107430}{920550931} a^{6} - \frac{441392882}{920550931} a^{5} - \frac{408976763}{920550931} a^{4} + \frac{182617407}{920550931} a^{3} - \frac{253398756}{920550931} a^{2} - \frac{42326560}{920550931} a + \frac{20519481}{920550931}$, $\frac{1}{920550931} a^{19} - \frac{257651}{920550931} a^{12} - \frac{264384}{48450049} a^{11} - \frac{4521958}{920550931} a^{10} + \frac{12690432}{48450049} a^{9} - \frac{68586578}{920550931} a^{8} - \frac{221873579}{920550931} a^{7} + \frac{291472965}{920550931} a^{6} - \frac{308363475}{920550931} a^{5} - \frac{384730637}{920550931} a^{4} - \frac{216088277}{920550931} a^{3} - \frac{331480628}{920550931} a^{2} - \frac{392139886}{920550931} a + \frac{128684722}{920550931}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3975952893490 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.66125.1, 5.5.390625.1, \(\Q(\zeta_{25})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 23 | Data not computed | ||||||