Normalized defining polynomial
\( x^{20} - 402 x^{18} + 60719 x^{16} - 4459274 x^{14} + 177613248 x^{12} - 4031618042 x^{10} + 53145939552 x^{8} - 409200511192 x^{6} + 1794975547533 x^{4} - 4105303940014 x^{2} + 3734857726084 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11373139009496303026630652133746934582083584=2^{38}\cdot 83^{4}\cdot 983^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $142.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{983} a^{14} - \frac{402}{983} a^{12} - \frac{227}{983} a^{10} - \frac{386}{983} a^{8} - \frac{107}{983} a^{6} + \frac{161}{983} a^{4} + \frac{317}{983} a^{2}$, $\frac{1}{983} a^{15} - \frac{402}{983} a^{13} - \frac{227}{983} a^{11} - \frac{386}{983} a^{9} - \frac{107}{983} a^{7} + \frac{161}{983} a^{5} + \frac{317}{983} a^{3}$, $\frac{1}{966289} a^{16} - \frac{402}{966289} a^{14} + \frac{60719}{966289} a^{12} + \frac{372171}{966289} a^{10} - \frac{183928}{966289} a^{8} - \frac{260334}{966289} a^{6} + \frac{44552}{966289} a^{4} - \frac{316}{983} a^{2}$, $\frac{1}{966289} a^{17} - \frac{402}{966289} a^{15} + \frac{60719}{966289} a^{13} + \frac{372171}{966289} a^{11} - \frac{183928}{966289} a^{9} - \frac{260334}{966289} a^{7} + \frac{44552}{966289} a^{5} - \frac{316}{983} a^{3}$, $\frac{1}{655598062469332653044455968031997779569142837066} a^{18} - \frac{27530975338316133501732734275014257830787}{327799031234666326522227984015998889784571418533} a^{16} - \frac{257981176981178301047476413800308397727714261}{655598062469332653044455968031997779569142837066} a^{14} + \frac{155679816732518217440978783284588684321694165792}{327799031234666326522227984015998889784571418533} a^{12} - \frac{119084692396327264760219203599527634568685550211}{327799031234666326522227984015998889784571418533} a^{10} + \frac{13283422872782044403377433771590689573392291623}{327799031234666326522227984015998889784571418533} a^{8} + \frac{141812030415003273227286362125154235706723696867}{327799031234666326522227984015998889784571418533} a^{6} + \frac{95511118765560201835625874977111343876503929}{333467987013902671945298050880975472822554851} a^{4} - \frac{330108686452624123668814138979591617171007}{678469963405702282696435505352951114593194} a^{2} + \frac{80649589499645561490927043936790545128}{345101710786216827414260175662742174259}$, $\frac{1}{655598062469332653044455968031997779569142837066} a^{19} - \frac{27530975338316133501732734275014257830787}{327799031234666326522227984015998889784571418533} a^{17} - \frac{257981176981178301047476413800308397727714261}{655598062469332653044455968031997779569142837066} a^{15} + \frac{155679816732518217440978783284588684321694165792}{327799031234666326522227984015998889784571418533} a^{13} - \frac{119084692396327264760219203599527634568685550211}{327799031234666326522227984015998889784571418533} a^{11} + \frac{13283422872782044403377433771590689573392291623}{327799031234666326522227984015998889784571418533} a^{9} + \frac{141812030415003273227286362125154235706723696867}{327799031234666326522227984015998889784571418533} a^{7} + \frac{95511118765560201835625874977111343876503929}{333467987013902671945298050880975472822554851} a^{5} - \frac{330108686452624123668814138979591617171007}{678469963405702282696435505352951114593194} a^{3} + \frac{80649589499645561490927043936790545128}{345101710786216827414260175662742174259} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1499919476880000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 63 conjugacy class representatives for t20n568 are not computed |
| Character table for t20n568 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||