Normalized defining polynomial
\( x^{20} - 3 x^{19} - 119 x^{18} + 177 x^{17} + 5889 x^{16} - 1381 x^{15} - 152812 x^{14} - 117981 x^{13} + 2164979 x^{12} + 3491841 x^{11} - 15663089 x^{10} - 38883595 x^{9} + 42546574 x^{8} + 187263905 x^{7} + 52059719 x^{6} - 314665312 x^{5} - 318011368 x^{4} + 4965810 x^{3} + 106222904 x^{2} + 21505161 x - 6072119 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1114719476673733231325235265693136806001=401^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{19} + \frac{838101751098418998279831992863364527126977480764222798330312447868265}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{18} + \frac{15666811414237624144333373382044382647023044567583215238882897174596}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{17} + \frac{134555555275580049161834207665672889429616153227796754581901580027372}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{16} + \frac{657874188410601513767773330405490939995969708017128873855572194838398}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{15} + \frac{437464631090396205128007783239597002483418160506803001510650176603078}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{14} - \frac{203264125252576828875486813679137804451949866793325376148792538984764}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{13} - \frac{163253699271873981595721933922735839634678420836054716908473576163686}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{12} - \frac{193363557625111574717163190149584286567576808936313367189640128003518}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{11} + \frac{892939285984699505849467551338651141962837093851520450479047580591867}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{10} + \frac{368660910450792932760908189044620457801720989088404058184294066595973}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{9} + \frac{711381673812221261817056759280931716812640037091206786821022319405559}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{8} + \frac{748252382792245756472318836941158298475440382711376827401278106109506}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{7} + \frac{279097962721307147831512103058388021607241971638972440218372797282212}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{6} - \frac{179144583112746165399491278678940147131056511913760637347141510231914}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{5} + \frac{653030860193594660006888275825193700231344749434443757009297736294880}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{4} - \frac{16967899423989059712508566983754148076133325220947862725970895684986}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{3} - \frac{338287613851089250229301192156398284721402334735806988158180636431307}{1915818496374114293913576176117251578108461084223628060509903438958243} a^{2} + \frac{923555705016934347333789354894705545759148287766334352740525996545741}{1915818496374114293913576176117251578108461084223628060509903438958243} a + \frac{808570242619340480277995935628435686900397405830299640699379837083317}{1915818496374114293913576176117251578108461084223628060509903438958243}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10186030781000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $C_5:C_4$ |
| Character table for $C_5:C_4$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), 4.4.64481201.1, 5.5.160801.1 x5, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 401 | Data not computed | ||||||