Normalized defining polynomial
\( x^{20} - 9 x^{19} - 34 x^{18} + 514 x^{17} - 281 x^{16} - 9650 x^{15} + 18041 x^{14} + 80127 x^{13} - 215841 x^{12} - 303918 x^{11} + 1139768 x^{10} + 387555 x^{9} - 2941138 x^{8} + 485980 x^{7} + 3639822 x^{6} - 1676891 x^{5} - 1746811 x^{4} + 1208121 x^{3} + 16821 x^{2} - 93015 x + 11259 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1064302799514018391410011360416915869649=17^{5}\cdot 257^{5}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 257, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{18} - \frac{1}{9} a^{16} + \frac{1}{9} a^{15} + \frac{4}{9} a^{14} + \frac{4}{9} a^{13} - \frac{4}{9} a^{12} + \frac{1}{3} a^{9} - \frac{4}{9} a^{8} - \frac{1}{3} a^{7} - \frac{4}{9} a^{6} - \frac{2}{9} a^{5} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} + \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{182161240509573022806741244502084998582638549} a^{19} + \frac{1300502593698643341514055874549503482095709}{60720413503191007602247081500694999527546183} a^{18} + \frac{9904130790566929041042231334068418881020192}{182161240509573022806741244502084998582638549} a^{17} + \frac{18352104470592711909045670571092471771331551}{182161240509573022806741244502084998582638549} a^{16} + \frac{6275899458341001506861057471183512457261230}{182161240509573022806741244502084998582638549} a^{15} + \frac{87491380882230249087455783317028068541978482}{182161240509573022806741244502084998582638549} a^{14} + \frac{37621018961112063556654365437274533186185406}{182161240509573022806741244502084998582638549} a^{13} - \frac{11569384825572394424273706462286195299369430}{60720413503191007602247081500694999527546183} a^{12} + \frac{1445212978344403059104626729546793372228846}{60720413503191007602247081500694999527546183} a^{11} + \frac{23504987158125809217697054800264341025621088}{60720413503191007602247081500694999527546183} a^{10} - \frac{51280116789837761184890389409537830366195909}{182161240509573022806741244502084998582638549} a^{9} - \frac{28361459761185686899167127703666663714984174}{60720413503191007602247081500694999527546183} a^{8} - \frac{62877013562175224299099878591976406960440945}{182161240509573022806741244502084998582638549} a^{7} - \frac{13438964793992724881625735637659252313461167}{182161240509573022806741244502084998582638549} a^{6} + \frac{2891387075874238676753092940035064723380799}{20240137834397002534082360500231666509182061} a^{5} - \frac{43697844903014274021641601537988461355379336}{182161240509573022806741244502084998582638549} a^{4} + \frac{10477114458973390391317859405047622993599808}{182161240509573022806741244502084998582638549} a^{3} - \frac{22418230124302064436093938165807388106584422}{60720413503191007602247081500694999527546183} a^{2} + \frac{1718543405529991541075885456421703149344266}{20240137834397002534082360500231666509182061} a - \frac{822121620913048692018646728900133875116596}{6746712611465667511360786833410555503060687}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17615340397100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 76 conjugacy class representatives for t20n436 are not computed |
| Character table for t20n436 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.112969065234769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.3.4 | $x^{4} + 459$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 257 | Data not computed | ||||||
| 401 | Data not computed | ||||||