Normalized defining polynomial
\( x^{20} - 8 x^{19} - 22 x^{18} + 362 x^{17} - 679 x^{16} - 3322 x^{15} + 14494 x^{14} - 8457 x^{13} - 46160 x^{12} + 79160 x^{11} + 25931 x^{10} - 152182 x^{9} + 70464 x^{8} + 101495 x^{7} - 99406 x^{6} - 6737 x^{5} + 36035 x^{4} - 9912 x^{3} - 1784 x^{2} + 712 x + 16 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(102248067138782963919359409682000081957=19^{5}\cdot 103^{5}\cdot 244301^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 103, 244301$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{14} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{10374015024733561252216856} a^{19} - \frac{116815309809745117716027}{1296751878091695156527107} a^{18} + \frac{1287610440359517790569291}{5187007512366780626108428} a^{17} - \frac{958620618390113980080941}{5187007512366780626108428} a^{16} - \frac{189558269872110677677699}{10374015024733561252216856} a^{15} - \frac{952078480908899321543991}{5187007512366780626108428} a^{14} + \frac{1134847705676115194467371}{5187007512366780626108428} a^{13} + \frac{3266170304883527551267835}{10374015024733561252216856} a^{12} - \frac{515720102897203819637853}{2593503756183390313054214} a^{11} - \frac{495482958693412483339417}{1296751878091695156527107} a^{10} + \frac{2733432888235993092480127}{10374015024733561252216856} a^{9} - \frac{896490195366914833906681}{5187007512366780626108428} a^{8} - \frac{571202158332304386519640}{1296751878091695156527107} a^{7} + \frac{1039370375022476720727099}{10374015024733561252216856} a^{6} - \frac{378671966038971606353065}{5187007512366780626108428} a^{5} + \frac{5067205663514977370992551}{10374015024733561252216856} a^{4} - \frac{1542167531871950364653545}{10374015024733561252216856} a^{3} + \frac{474737461438764707389700}{1296751878091695156527107} a^{2} + \frac{1028440169454702074345843}{2593503756183390313054214} a + \frac{203091432657405136850024}{1296751878091695156527107}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4391576352890 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 15000 |
| The 190 conjugacy class representatives for t20n462 are not computed |
| Character table for t20n462 is not computed |
Intermediate fields
| 4.4.1957.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | $15{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }$ | $20$ | $15{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | $20$ | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | $15{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | $20$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{5}$ | $15{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }$ | $20$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | $15{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.10.0.1 | $x^{10} + x^{2} - 2 x + 14$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 19.10.5.1 | $x^{10} - 722 x^{6} + 130321 x^{2} - 61902475$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $103$ | 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.2.1.2 | $x^{2} + 206$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 103.10.0.1 | $x^{10} - x + 12$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 244301 | Data not computed | ||||||