Properties

Label 20.20.1006276999...0000.1
Degree $20$
Signature $[20, 0]$
Discriminant $2^{30}\cdot 5^{10}\cdot 11^{2}\cdot 28162171^{2}$
Root discriminant $44.68$
Ramified primes $2, 5, 11, 28162171$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T656

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 30, -119, -616, 2784, 5110, -18366, -24108, 37694, 37522, -36003, -23766, 17696, 6924, -4486, -1010, 594, 72, -39, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 - 39*x^18 + 72*x^17 + 594*x^16 - 1010*x^15 - 4486*x^14 + 6924*x^13 + 17696*x^12 - 23766*x^11 - 36003*x^10 + 37522*x^9 + 37694*x^8 - 24108*x^7 - 18366*x^6 + 5110*x^5 + 2784*x^4 - 616*x^3 - 119*x^2 + 30*x - 1)
 
gp: K = bnfinit(x^20 - 2*x^19 - 39*x^18 + 72*x^17 + 594*x^16 - 1010*x^15 - 4486*x^14 + 6924*x^13 + 17696*x^12 - 23766*x^11 - 36003*x^10 + 37522*x^9 + 37694*x^8 - 24108*x^7 - 18366*x^6 + 5110*x^5 + 2784*x^4 - 616*x^3 - 119*x^2 + 30*x - 1, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} - 39 x^{18} + 72 x^{17} + 594 x^{16} - 1010 x^{15} - 4486 x^{14} + 6924 x^{13} + 17696 x^{12} - 23766 x^{11} - 36003 x^{10} + 37522 x^{9} + 37694 x^{8} - 24108 x^{7} - 18366 x^{6} + 5110 x^{5} + 2784 x^{4} - 616 x^{3} - 119 x^{2} + 30 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[20, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1006276999144246198927360000000000=2^{30}\cdot 5^{10}\cdot 11^{2}\cdot 28162171^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $44.68$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11, 28162171$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2923736942898115619577193123} a^{19} + \frac{113489140248928936647311732}{2923736942898115619577193123} a^{18} - \frac{82397703390993212004412535}{2923736942898115619577193123} a^{17} + \frac{1084251102175488984211241428}{2923736942898115619577193123} a^{16} + \frac{10289058159287672369580968}{2923736942898115619577193123} a^{15} - \frac{1080522646321682347273160636}{2923736942898115619577193123} a^{14} - \frac{741999826467809043963034824}{2923736942898115619577193123} a^{13} + \frac{92767920446213454368951513}{2923736942898115619577193123} a^{12} - \frac{1652073838279137866270877}{2923736942898115619577193123} a^{11} + \frac{832960966649431701652433325}{2923736942898115619577193123} a^{10} - \frac{1006562711130761505191877851}{2923736942898115619577193123} a^{9} - \frac{1366230074052468193464777686}{2923736942898115619577193123} a^{8} + \frac{962382042522821275600724841}{2923736942898115619577193123} a^{7} - \frac{735669935291600422562040569}{2923736942898115619577193123} a^{6} + \frac{461775547677761720906149167}{2923736942898115619577193123} a^{5} - \frac{1390237105033174251955693895}{2923736942898115619577193123} a^{4} - \frac{76664648507453413874094650}{153880891731479769451431217} a^{3} + \frac{942679891037039425806451445}{2923736942898115619577193123} a^{2} + \frac{88631944256775131312646703}{2923736942898115619577193123} a - \frac{644192354095755030663010887}{2923736942898115619577193123}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 10034305882.8 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T656:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 57600
The 70 conjugacy class representatives for t20n656 are not computed
Character table for t20n656 is not computed

Intermediate fields

\(\Q(\sqrt{10}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 10.10.968074628125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.6.0.1$x^{6} + x^{2} - 2 x + 8$$1$$6$$0$$C_6$$[\ ]^{6}$
11.10.0.1$x^{10} + x^{2} - x + 6$$1$$10$$0$$C_{10}$$[\ ]^{10}$
28162171Data not computed