Normalized defining polynomial
\( x^{20} - x^{19} - 33 x^{18} + 48 x^{17} + 398 x^{16} - 758 x^{15} - 2109 x^{14} + 5370 x^{13} + 4019 x^{12} - 18033 x^{11} + 3882 x^{10} + 25627 x^{9} - 20370 x^{8} - 8176 x^{7} + 14111 x^{6} - 2752 x^{5} - 1888 x^{4} + 657 x^{3} + 22 x^{2} - 17 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10054202156858080231167941574353=17^{15}\cdot 37^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{51} a^{16} + \frac{11}{51} a^{15} - \frac{2}{17} a^{14} - \frac{1}{3} a^{13} - \frac{7}{51} a^{12} - \frac{6}{17} a^{11} + \frac{1}{51} a^{10} - \frac{4}{17} a^{9} + \frac{13}{51} a^{8} - \frac{23}{51} a^{7} - \frac{20}{51} a^{6} + \frac{20}{51} a^{5} + \frac{23}{51} a^{4} + \frac{22}{51} a^{3} - \frac{19}{51} a^{2} - \frac{2}{17} a - \frac{13}{51}$, $\frac{1}{51} a^{17} - \frac{25}{51} a^{15} - \frac{2}{51} a^{14} - \frac{8}{17} a^{13} + \frac{8}{51} a^{12} - \frac{5}{51} a^{11} - \frac{23}{51} a^{10} - \frac{8}{51} a^{9} - \frac{13}{51} a^{8} - \frac{22}{51} a^{7} - \frac{5}{17} a^{6} + \frac{7}{51} a^{5} + \frac{8}{17} a^{4} - \frac{2}{17} a^{3} - \frac{1}{51} a^{2} + \frac{2}{51} a - \frac{10}{51}$, $\frac{1}{663} a^{18} + \frac{1}{663} a^{17} + \frac{1}{221} a^{16} + \frac{179}{663} a^{15} - \frac{11}{51} a^{14} - \frac{96}{221} a^{13} + \frac{266}{663} a^{12} - \frac{328}{663} a^{11} + \frac{84}{221} a^{10} + \frac{3}{13} a^{9} - \frac{283}{663} a^{8} - \frac{74}{221} a^{7} - \frac{211}{663} a^{6} + \frac{6}{17} a^{5} + \frac{203}{663} a^{4} + \frac{50}{221} a^{3} - \frac{92}{221} a^{2} - \frac{125}{663} a + \frac{2}{39}$, $\frac{1}{7714921122129} a^{19} + \frac{3357623714}{7714921122129} a^{18} + \frac{17772988433}{7714921122129} a^{17} - \frac{56205319037}{7714921122129} a^{16} - \frac{417007305366}{2571640374043} a^{15} + \frac{2012109945194}{7714921122129} a^{14} + \frac{50478622565}{453818889537} a^{13} - \frac{423548909996}{7714921122129} a^{12} + \frac{390835580620}{2571640374043} a^{11} - \frac{1135539918554}{2571640374043} a^{10} - \frac{739940005676}{2571640374043} a^{9} - \frac{1209922828888}{2571640374043} a^{8} + \frac{1065567768493}{2571640374043} a^{7} + \frac{1082749102663}{7714921122129} a^{6} - \frac{2227906084721}{7714921122129} a^{5} - \frac{1143187996913}{2571640374043} a^{4} + \frac{3003872460392}{7714921122129} a^{3} + \frac{688548309643}{7714921122129} a^{2} + \frac{3591342376549}{7714921122129} a + \frac{3433259476975}{7714921122129}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1110509306.59 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 5.5.6725897.1, 10.10.769040737728353.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.4.3.1 | $x^{4} - 17$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $37$ | 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |