Properties

Label 20.2.94450499584...0000.1
Degree $20$
Signature $[2, 9]$
Discriminant $-\,2^{34}\cdot 5^{20}\cdot 7^{8}$
Root discriminant $35.38$
Ramified primes $2, 5, 7$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group 20T925

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-9604, 0, -20580, 0, 2205, 0, 11270, 0, -6965, 0, 672, 0, 645, 0, -120, 0, -5, 0, 10, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 10*x^18 - 5*x^16 - 120*x^14 + 645*x^12 + 672*x^10 - 6965*x^8 + 11270*x^6 + 2205*x^4 - 20580*x^2 - 9604)
 
gp: K = bnfinit(x^20 + 10*x^18 - 5*x^16 - 120*x^14 + 645*x^12 + 672*x^10 - 6965*x^8 + 11270*x^6 + 2205*x^4 - 20580*x^2 - 9604, 1)
 

Normalized defining polynomial

\( x^{20} + 10 x^{18} - 5 x^{16} - 120 x^{14} + 645 x^{12} + 672 x^{10} - 6965 x^{8} + 11270 x^{6} + 2205 x^{4} - 20580 x^{2} - 9604 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-9445049958400000000000000000000=-\,2^{34}\cdot 5^{20}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $35.38$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{2}{5}$, $\frac{1}{20} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{3}{10} a$, $\frac{1}{140} a^{12} + \frac{3}{140} a^{10} - \frac{1}{2} a^{9} + \frac{13}{28} a^{8} - \frac{1}{2} a^{7} - \frac{3}{28} a^{6} + \frac{3}{28} a^{4} - \frac{1}{2} a^{3} - \frac{1}{10} a^{2} + \frac{1}{5}$, $\frac{1}{140} a^{13} + \frac{3}{140} a^{11} + \frac{13}{28} a^{9} - \frac{3}{28} a^{7} - \frac{1}{2} a^{6} + \frac{3}{28} a^{5} - \frac{1}{10} a^{3} - \frac{1}{2} a^{2} + \frac{1}{5} a$, $\frac{1}{140} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} + \frac{3}{7} a^{6} - \frac{59}{140} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{140} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} + \frac{3}{7} a^{7} - \frac{1}{2} a^{6} - \frac{59}{140} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{980} a^{16} + \frac{3}{980} a^{14} + \frac{1}{490} a^{12} + \frac{12}{245} a^{10} + \frac{6}{49} a^{8} - \frac{1}{2} a^{7} - \frac{1}{20} a^{6} - \frac{1}{2} a^{5} - \frac{11}{140} a^{4} - \frac{1}{2} a^{3} - \frac{1}{10} a^{2} - \frac{2}{5}$, $\frac{1}{980} a^{17} + \frac{3}{980} a^{15} + \frac{1}{490} a^{13} - \frac{1}{980} a^{11} + \frac{73}{196} a^{9} - \frac{3}{10} a^{7} - \frac{23}{70} a^{5} - \frac{1}{2} a^{4} + \frac{3}{20} a^{3} - \frac{1}{2} a^{2} + \frac{3}{10} a$, $\frac{1}{2669824720220} a^{18} + \frac{455840971}{1334912360110} a^{16} - \frac{4032433977}{2669824720220} a^{14} + \frac{1732583787}{533964944044} a^{12} - \frac{72563300347}{2669824720220} a^{10} + \frac{74274071919}{190701765730} a^{8} - \frac{1}{2} a^{7} - \frac{116155163279}{381403531460} a^{6} - \frac{6176063267}{13621554695} a^{4} - \frac{740964825}{5448621878} a^{2} + \frac{795043194}{1945936385}$, $\frac{1}{2669824720220} a^{19} + \frac{455840971}{1334912360110} a^{17} - \frac{4032433977}{2669824720220} a^{15} + \frac{1732583787}{533964944044} a^{13} + \frac{15231983916}{667456180055} a^{11} + \frac{53197260973}{381403531460} a^{9} - \frac{10402140207}{190701765730} a^{7} - \frac{1}{2} a^{6} - \frac{11082698373}{54486218780} a^{5} - \frac{4206240589}{10897243756} a^{3} - \frac{1}{2} a^{2} - \frac{1134224551}{3891872770} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 25929469.4311 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T925:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 409600
The 190 conjugacy class representatives for t20n925 are not computed
Character table for t20n925 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 10.6.15680000000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ R R $20$ ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.10.2$x^{4} + 2 x^{2} - 1$$4$$1$$10$$D_{4}$$[2, 3, 7/2]$
2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
$5$5.10.10.9$x^{10} + 10 x^{8} + 10 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 17$$5$$2$$10$$F_{5}\times C_2$$[5/4]_{4}^{2}$
5.10.10.9$x^{10} + 10 x^{8} + 10 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 17$$5$$2$$10$$F_{5}\times C_2$$[5/4]_{4}^{2}$
$7$7.2.1.1$x^{2} - 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.1$x^{2} - 7$$2$$1$$1$$C_2$$[\ ]_{2}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.8.6.3$x^{8} - 7 x^{4} + 147$$4$$2$$6$$C_8:C_2$$[\ ]_{4}^{4}$