Normalized defining polynomial
\( x^{20} + 10 x^{18} - 4 x^{17} + 52 x^{16} - 40 x^{15} + 152 x^{14} - 224 x^{13} + 303 x^{12} - 720 x^{11} + 394 x^{10} - 1504 x^{9} + 610 x^{8} - 1984 x^{7} + 924 x^{6} - 1940 x^{5} + 1288 x^{4} - 728 x^{3} + 696 x^{2} - 632 x - 178 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-9320949285183413497763458973696=-\,2^{44}\cdot 2657^{4}\cdot 10631\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 2657, 10631$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{14}$, $\frac{1}{245194298753421063486264022} a^{19} - \frac{20951402986049327677391061}{245194298753421063486264022} a^{18} - \frac{12154420797290228546517107}{245194298753421063486264022} a^{17} - \frac{30322985762062582270146660}{122597149376710531743132011} a^{16} + \frac{26315278878668404868659377}{245194298753421063486264022} a^{15} - \frac{13935885947737802435305131}{245194298753421063486264022} a^{14} + \frac{2390781726983365395527743}{22290390795765551226024002} a^{13} - \frac{58839555070241400344115998}{122597149376710531743132011} a^{12} - \frac{31452111616285153522071218}{122597149376710531743132011} a^{11} - \frac{8843730722062708537603658}{122597149376710531743132011} a^{10} - \frac{52122972598099939589942236}{122597149376710531743132011} a^{9} + \frac{15655176098290144519841534}{122597149376710531743132011} a^{8} + \frac{5083812985750807298542406}{11145195397882775613012001} a^{7} + \frac{414115993268378856632219}{122597149376710531743132011} a^{6} - \frac{33170841673116892949763525}{122597149376710531743132011} a^{5} + \frac{36024941276841409878083376}{122597149376710531743132011} a^{4} + \frac{30360957767862905962938279}{122597149376710531743132011} a^{3} - \frac{58972470506011055596096379}{122597149376710531743132011} a^{2} - \frac{49472940460942709316262427}{122597149376710531743132011} a - \frac{2016489003663694000855867}{122597149376710531743132011}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37777564.0629 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 396 conjugacy class representatives for t20n1036 are not computed |
| Character table for t20n1036 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.6.925322313728.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.13 | $x^{8} + 6 x^{6} + 4 x^{5} + 2 x^{4} + 4$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ |
| 2.12.28.225 | $x^{12} + 4 x^{11} + 2 x^{10} + 2 x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{5} + 4 x^{2} - 2$ | $12$ | $1$ | $28$ | $C_2 \times S_4$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| 2657 | Data not computed | ||||||
| 10631 | Data not computed | ||||||