Properties

Label 20.2.84297516676...9375.1
Degree $20$
Signature $[2, 9]$
Discriminant $-\,5^{10}\cdot 71^{5}\cdot 263^{4}$
Root discriminant $19.78$
Ramified primes $5, 71, 263$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T1036

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, 6, 0, -23, 81, -131, 183, -179, 176, -153, 176, -179, 183, -131, 81, -23, 0, 6, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 + 6*x^18 - 23*x^16 + 81*x^15 - 131*x^14 + 183*x^13 - 179*x^12 + 176*x^11 - 153*x^10 + 176*x^9 - 179*x^8 + 183*x^7 - 131*x^6 + 81*x^5 - 23*x^4 + 6*x^2 - 2*x + 1)
 
gp: K = bnfinit(x^20 - 2*x^19 + 6*x^18 - 23*x^16 + 81*x^15 - 131*x^14 + 183*x^13 - 179*x^12 + 176*x^11 - 153*x^10 + 176*x^9 - 179*x^8 + 183*x^7 - 131*x^6 + 81*x^5 - 23*x^4 + 6*x^2 - 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} + 6 x^{18} - 23 x^{16} + 81 x^{15} - 131 x^{14} + 183 x^{13} - 179 x^{12} + 176 x^{11} - 153 x^{10} + 176 x^{9} - 179 x^{8} + 183 x^{7} - 131 x^{6} + 81 x^{5} - 23 x^{4} + 6 x^{2} - 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-84297516676069491318359375=-\,5^{10}\cdot 71^{5}\cdot 263^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.78$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 71, 263$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{6495341} a^{18} + \frac{1378928}{6495341} a^{17} - \frac{937295}{6495341} a^{16} - \frac{3135075}{6495341} a^{15} - \frac{2381177}{6495341} a^{14} - \frac{445862}{6495341} a^{13} - \frac{99600}{6495341} a^{12} + \frac{3003490}{6495341} a^{11} - \frac{2230686}{6495341} a^{10} - \frac{3183970}{6495341} a^{9} - \frac{2230686}{6495341} a^{8} + \frac{3003490}{6495341} a^{7} - \frac{99600}{6495341} a^{6} - \frac{445862}{6495341} a^{5} - \frac{2381177}{6495341} a^{4} - \frac{3135075}{6495341} a^{3} - \frac{937295}{6495341} a^{2} + \frac{1378928}{6495341} a + \frac{1}{6495341}$, $\frac{1}{266308981} a^{19} - \frac{3}{266308981} a^{18} - \frac{66332333}{266308981} a^{17} + \frac{90493141}{266308981} a^{16} + \frac{120988485}{266308981} a^{15} + \frac{57479061}{266308981} a^{14} + \frac{67780318}{266308981} a^{13} + \frac{967274}{4365721} a^{12} + \frac{49058659}{266308981} a^{11} + \frac{442716}{1142957} a^{10} - \frac{72529589}{266308981} a^{9} - \frac{72529260}{266308981} a^{8} + \frac{103152473}{266308981} a^{7} + \frac{49059021}{266308981} a^{6} + \frac{59003400}{266308981} a^{5} + \frac{67780530}{266308981} a^{4} + \frac{57478957}{266308981} a^{3} + \frac{120988508}{266308981} a^{2} + \frac{90493147}{266308981} a - \frac{66332341}{266308981}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 69159.4981123 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T1036:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 14745600
The 396 conjugacy class representatives for t20n1036 are not computed
Character table for t20n1036 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.6.1089627903125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R $20$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ $20$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ $20$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
71Data not computed
263Data not computed