Normalized defining polynomial
\( x^{20} + 1912 x^{18} + 1535084 x^{16} + 775539485 x^{14} + 265312180916 x^{12} + 58487400397679 x^{10} + 7046810726338171 x^{8} + 55091880668161990 x^{6} - 99376354587176198511 x^{4} - 9498393828889421896758 x^{2} - 223230418947143342493949 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8411799526250997899915089732983470958069760000000000=-\,2^{20}\cdot 5^{10}\cdot 60662149^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $394.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 60662149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{60662149} a^{16} + \frac{1912}{60662149} a^{14} + \frac{1535084}{60662149} a^{12} - \frac{13068452}{60662149} a^{10} - \frac{24058810}{60662149} a^{8} - \frac{10560671}{60662149} a^{6} + \frac{13170392}{60662149} a^{4} + \frac{14580742}{60662149} a^{2}$, $\frac{1}{60662149} a^{17} + \frac{1912}{60662149} a^{15} + \frac{1535084}{60662149} a^{13} - \frac{13068452}{60662149} a^{11} - \frac{24058810}{60662149} a^{9} - \frac{10560671}{60662149} a^{7} + \frac{13170392}{60662149} a^{5} + \frac{14580742}{60662149} a^{3}$, $\frac{1}{6785413178253979723568169200526596264158702786440195913095823574995610314140861469713036084798198478} a^{18} + \frac{13882029638914298793859067637454939445905673214107117808041808750240047064948286757513676345}{6785413178253979723568169200526596264158702786440195913095823574995610314140861469713036084798198478} a^{16} + \frac{1514679082406141352159360911319586642221887389163943075083350697905568829071259221462711944992675199}{6785413178253979723568169200526596264158702786440195913095823574995610314140861469713036084798198478} a^{14} - \frac{1231171771877285932436324533278865990108419423553283545818197135974611618338175194327118240187204720}{3392706589126989861784084600263298132079351393220097956547911787497805157070430734856518042399099239} a^{12} + \frac{2914511541816674522490486659012353599182244040221954592956488553770778778123823320220209981006285}{7728261023068314035954634624745553831615834608701817668674058741452859127723076844775667522549201} a^{10} - \frac{1469650047746822544777061515915530608171102083849332998482377550323361713350071876998742173254273375}{6785413178253979723568169200526596264158702786440195913095823574995610314140861469713036084798198478} a^{8} + \frac{72278427951237347314736852124932732038883684263779771945244993640652970353386752169784139516734895}{178563504690894203251793926329647270109439547011584102976205883552516060898443722887185160126268381} a^{6} - \frac{1578498630826242370568758410569684065937962017070908976658294713831798527754627030267783725279202820}{3392706589126989861784084600263298132079351393220097956547911787497805157070430734856518042399099239} a^{4} - \frac{6538930522591692913432481712236549970216798873804175690040080648507225161474081527408333731}{111855799540731399469019292417856747280065907101975498973764077744684091461066792568015288822} a^{2} + \frac{61806527729175025093803160284498214483350989076897170685353099997942897946215993521}{1843914226328041881091606108742648521734136176118249601967844524345553459721098778878}$, $\frac{1}{6785413178253979723568169200526596264158702786440195913095823574995610314140861469713036084798198478} a^{19} + \frac{13882029638914298793859067637454939445905673214107117808041808750240047064948286757513676345}{6785413178253979723568169200526596264158702786440195913095823574995610314140861469713036084798198478} a^{17} + \frac{1514679082406141352159360911319586642221887389163943075083350697905568829071259221462711944992675199}{6785413178253979723568169200526596264158702786440195913095823574995610314140861469713036084798198478} a^{15} - \frac{1231171771877285932436324533278865990108419423553283545818197135974611618338175194327118240187204720}{3392706589126989861784084600263298132079351393220097956547911787497805157070430734856518042399099239} a^{13} + \frac{2914511541816674522490486659012353599182244040221954592956488553770778778123823320220209981006285}{7728261023068314035954634624745553831615834608701817668674058741452859127723076844775667522549201} a^{11} - \frac{1469650047746822544777061515915530608171102083849332998482377550323361713350071876998742173254273375}{6785413178253979723568169200526596264158702786440195913095823574995610314140861469713036084798198478} a^{9} + \frac{72278427951237347314736852124932732038883684263779771945244993640652970353386752169784139516734895}{178563504690894203251793926329647270109439547011584102976205883552516060898443722887185160126268381} a^{7} - \frac{1578498630826242370568758410569684065937962017070908976658294713831798527754627030267783725279202820}{3392706589126989861784084600263298132079351393220097956547911787497805157070430734856518042399099239} a^{5} - \frac{6538930522591692913432481712236549970216798873804175690040080648507225161474081527408333731}{111855799540731399469019292417856747280065907101975498973764077744684091461066792568015288822} a^{3} + \frac{61806527729175025093803160284498214483350989076897170685353099997942897946215993521}{1843914226328041881091606108742648521734136176118249601967844524345553459721098778878} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 238962828323000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 115200 |
| The 119 conjugacy class representatives for t20n781 are not computed |
| Character table for t20n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.24264859600.2, 10.6.189569215625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 60662149 | Data not computed | ||||||