Normalized defining polynomial
\( x^{20} - 4 x^{19} + 33 x^{18} - 86 x^{17} + 274 x^{16} - 292 x^{15} - 1125 x^{14} + 4757 x^{13} - 27523 x^{12} + 36977 x^{11} - 116322 x^{10} - 99930 x^{9} + 354518 x^{8} - 2208621 x^{7} + 4299577 x^{6} - 8938579 x^{5} + 10789583 x^{4} - 11186429 x^{3} + 6073672 x^{2} - 500979 x - 1444031 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-785748055861331850537130300409483=-\,13^{10}\cdot 97^{2}\cdot 347^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 97, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{13} a^{18} + \frac{2}{13} a^{17} - \frac{3}{13} a^{16} - \frac{5}{13} a^{15} - \frac{2}{13} a^{14} + \frac{1}{13} a^{13} + \frac{4}{13} a^{12} + \frac{1}{13} a^{11} - \frac{6}{13} a^{10} - \frac{1}{13} a^{9} - \frac{2}{13} a^{8} - \frac{2}{13} a^{7} + \frac{1}{13} a^{6} - \frac{1}{13} a^{5} - \frac{6}{13} a^{4} - \frac{1}{13} a^{3} - \frac{5}{13} a^{2} - \frac{2}{13} a + \frac{1}{13}$, $\frac{1}{305000423569926775186348749484427734381180436894597185289370353} a^{19} + \frac{283197510341195211779212109648420286387464930173519604544846}{23461571043840521168180673037263671875475418222661321945336181} a^{18} - \frac{130148665602479273663020732943227289052485452083095419618337429}{305000423569926775186348749484427734381180436894597185289370353} a^{17} - \frac{39552831571183842582890227041426565290998198343607335328427708}{305000423569926775186348749484427734381180436894597185289370353} a^{16} + \frac{121795410981996471073837058111791127921432612406923481643990208}{305000423569926775186348749484427734381180436894597185289370353} a^{15} + \frac{119505008846962928156778715714283946533743453836474373962400719}{305000423569926775186348749484427734381180436894597185289370353} a^{14} - \frac{19934657445884511368056784414011069684160576660865441715168113}{305000423569926775186348749484427734381180436894597185289370353} a^{13} - \frac{151551885335287747288982443746494866493774917637155601970091123}{305000423569926775186348749484427734381180436894597185289370353} a^{12} + \frac{2575297406221034398953135927660448450600306124858093936242820}{5754724973017486324270731122347693101531706356501833684705101} a^{11} + \frac{89843637390320027523366944725856971337124876444491505212190130}{305000423569926775186348749484427734381180436894597185289370353} a^{10} + \frac{11367054438269994391914299733842134435540717196240134585627046}{23461571043840521168180673037263671875475418222661321945336181} a^{9} + \frac{92610622483668244176809521724604829973099893321258295106263351}{305000423569926775186348749484427734381180436894597185289370353} a^{8} - \frac{30056631997902118295484625210455463724245533860600852683785159}{305000423569926775186348749484427734381180436894597185289370353} a^{7} - \frac{61259412902973130051450633608990393498739339972181405831365595}{305000423569926775186348749484427734381180436894597185289370353} a^{6} + \frac{69335788815230184404682889909392256290021295032473720450920525}{305000423569926775186348749484427734381180436894597185289370353} a^{5} - \frac{97531608430612044969479140533691783635028112061221623616979429}{305000423569926775186348749484427734381180436894597185289370353} a^{4} + \frac{24603156543872680152189354054304071596072712634026360467978700}{305000423569926775186348749484427734381180436894597185289370353} a^{3} - \frac{27007540362834423210567878517604742704443406528945034207418199}{305000423569926775186348749484427734381180436894597185289370353} a^{2} - \frac{9989051125316559476853619780236910102852633328001583622245619}{305000423569926775186348749484427734381180436894597185289370353} a + \frac{32447472559178287924332824014963882214098124322647113282529052}{305000423569926775186348749484427734381180436894597185289370353}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 169042557.959 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n796 are not computed |
| Character table for t20n796 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.3.4511.1, 10.6.44707018837.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 347 | Data not computed | ||||||