Normalized defining polynomial
\( x^{20} - 5 x^{19} - 95 x^{18} + 735 x^{17} + 2585 x^{16} - 33161 x^{15} + 15315 x^{14} + 1207235 x^{13} - 10398055 x^{12} + 20182195 x^{11} - 30396651 x^{10} + 607794475 x^{9} + 1251634225 x^{8} - 15837478375 x^{7} + 56145238125 x^{6} - 1676184575 x^{5} + 718698621250 x^{4} - 1527571833750 x^{3} + 4635668881250 x^{2} + 4515903081250 x + 25851941971250 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-779025894158619568967484436566138267517089843750000000000000000=-\,2^{16}\cdot 3^{16}\cdot 5^{38}\cdot 29^{10}\cdot 71^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1395.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3}$, $\frac{1}{5} a^{7} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3}$, $\frac{1}{15} a^{8} + \frac{1}{15} a^{7} + \frac{1}{15} a^{6} + \frac{7}{15} a^{5} + \frac{1}{5} a^{4} + \frac{2}{15} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{15} a^{9} + \frac{1}{3} a^{5} + \frac{2}{15} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{150} a^{10} - \frac{1}{30} a^{9} + \frac{1}{30} a^{6} - \frac{23}{150} a^{5} + \frac{4}{15} a^{4} + \frac{2}{5} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{300} a^{11} + \frac{1}{60} a^{9} - \frac{1}{12} a^{7} - \frac{7}{75} a^{6} - \frac{9}{20} a^{5} - \frac{7}{30} a^{4} - \frac{1}{6} a^{2} + \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{300} a^{12} - \frac{1}{300} a^{10} - \frac{1}{30} a^{9} - \frac{1}{60} a^{8} - \frac{2}{75} a^{7} - \frac{1}{12} a^{6} + \frac{32}{75} a^{5} - \frac{1}{15} a^{4} + \frac{3}{10} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{300} a^{13} - \frac{1}{30} a^{9} - \frac{2}{75} a^{8} + \frac{1}{30} a^{7} - \frac{1}{10} a^{6} - \frac{1}{60} a^{5} - \frac{1}{3} a^{4} - \frac{1}{15} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{1500} a^{14} - \frac{1}{1500} a^{13} - \frac{1}{1500} a^{12} - \frac{1}{300} a^{10} - \frac{7}{375} a^{9} + \frac{43}{1500} a^{8} + \frac{9}{125} a^{7} + \frac{3}{50} a^{6} + \frac{29}{300} a^{5} - \frac{1}{3} a^{4} - \frac{7}{30} a^{3} + \frac{1}{5} a^{2} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6000} a^{15} + \frac{1}{2000} a^{13} + \frac{1}{1500} a^{12} - \frac{1}{600} a^{11} + \frac{1}{3000} a^{10} + \frac{3}{200} a^{9} - \frac{7}{3000} a^{8} - \frac{367}{6000} a^{7} - \frac{1}{15} a^{6} - \frac{277}{1200} a^{5} + \frac{11}{30} a^{4} - \frac{29}{120} a^{2} - \frac{1}{3} a + \frac{3}{8}$, $\frac{1}{18000} a^{16} - \frac{1}{18000} a^{15} + \frac{1}{6000} a^{14} + \frac{1}{18000} a^{13} + \frac{1}{3000} a^{12} + \frac{1}{1500} a^{11} + \frac{7}{4500} a^{10} - \frac{13}{2250} a^{9} - \frac{151}{6000} a^{8} - \frac{193}{18000} a^{7} - \frac{97}{3600} a^{6} - \frac{83}{400} a^{5} + \frac{7}{30} a^{4} + \frac{151}{360} a^{3} - \frac{17}{120} a^{2} + \frac{13}{72} a + \frac{31}{72}$, $\frac{1}{36000} a^{17} + \frac{1}{18000} a^{15} + \frac{1}{9000} a^{14} + \frac{7}{36000} a^{13} - \frac{7}{6000} a^{12} - \frac{1}{1800} a^{11} - \frac{1}{2250} a^{10} - \frac{257}{36000} a^{9} - \frac{173}{18000} a^{8} - \frac{383}{6000} a^{7} + \frac{16}{225} a^{6} + \frac{59}{2400} a^{5} - \frac{61}{144} a^{4} + \frac{4}{45} a^{3} - \frac{83}{360} a^{2} - \frac{1}{9} a - \frac{29}{144}$, $\frac{1}{180000} a^{18} - \frac{1}{90000} a^{17} + \frac{1}{45000} a^{16} - \frac{1}{22500} a^{15} - \frac{19}{180000} a^{14} + \frac{1}{2500} a^{13} - \frac{71}{45000} a^{12} + \frac{19}{15000} a^{11} - \frac{181}{180000} a^{10} + \frac{173}{45000} a^{9} + \frac{109}{9000} a^{8} - \frac{827}{9000} a^{7} - \frac{199}{2400} a^{6} - \frac{331}{1800} a^{5} - \frac{83}{1800} a^{4} + \frac{23}{90} a^{3} - \frac{1}{20} a^{2} + \frac{1}{144} a + \frac{11}{24}$, $\frac{1}{278727744627322930731937012300701443576148208835962238624340402533557468032155075114580000} a^{19} + \frac{369628717322649063609483367385387591792366030854503996409909257652411271687180188537}{278727744627322930731937012300701443576148208835962238624340402533557468032155075114580000} a^{18} + \frac{3723032957478052130268554750114660428030658893572957135613271865394227291286984732501}{278727744627322930731937012300701443576148208835962238624340402533557468032155075114580000} a^{17} - \frac{2682796711207023725878190737098698196292562696728483368194303801371582532967070848691}{139363872313661465365968506150350721788074104417981119312170201266778734016077537557290000} a^{16} - \frac{14979056696758472339094795422857006620780361404595931555397187966696903090863672296131}{278727744627322930731937012300701443576148208835962238624340402533557468032155075114580000} a^{15} - \frac{3383965511420080165701328493198803678702472840860260435325155820563057707982289550513}{92909248209107643577312337433567147858716069611987412874780134177852489344051691704860000} a^{14} + \frac{446004515918089064757948513262748234152000842911503169590311453002930654805424569804259}{278727744627322930731937012300701443576148208835962238624340402533557468032155075114580000} a^{13} + \frac{13430252831069247082624846010309795714622338864535140863776594300548717148605881504597}{46454624104553821788656168716783573929358034805993706437390067088926244672025845852430000} a^{12} - \frac{348008278831545066765877653680317008660554272464281725590123637333059957751788776176549}{278727744627322930731937012300701443576148208835962238624340402533557468032155075114580000} a^{11} - \frac{69283240399641504981425931688543419135178470894146826162186443272208287033840089478267}{278727744627322930731937012300701443576148208835962238624340402533557468032155075114580000} a^{10} + \frac{1031207114392441773837042560128215822238694550782110787327291872381767513102771832195553}{278727744627322930731937012300701443576148208835962238624340402533557468032155075114580000} a^{9} + \frac{79154604542299359129602165890397150042954802776185349343334154240949922569124698439331}{2787277446273229307319370123007014435761482088359622386243404025335574680321550751145800} a^{8} + \frac{286894804939663507977417522610072761794824006927739258415269084735311112810344856960929}{3716369928364305743092493497342685914348642784479496514991205367114099573762067668194400} a^{7} + \frac{769625671500903286471680084980703786962870021692385782279213021515271018565171092147511}{11149109785092917229277480492028057743045928353438489544973616101342298721286203004583200} a^{6} - \frac{4764700562282078016503764317751868527554304431798616860836690883898289365053243424100087}{11149109785092917229277480492028057743045928353438489544973616101342298721286203004583200} a^{5} - \frac{664108240372734442536955122049257108788487755050941837183318106235488499637154000162369}{5574554892546458614638740246014028871522964176719244772486808050671149360643101502291600} a^{4} - \frac{42452495942598882618257944672116274627229802931544954355810783456677704722491061687823}{185818496418215287154624674867134295717432139223974825749560268355704978688103383409720} a^{3} + \frac{41950668010583907713751545030682743265011560455831419323627814040239416956152627920705}{222982195701858344585549609840561154860918567068769790899472322026845974425724060091664} a^{2} - \frac{24646423479772443646495908288804092878305849066199921422334293073793601199561699465655}{74327398567286114861849869946853718286972855689589930299824107342281991475241353363888} a - \frac{1950081105292381554735704923184947937904804582760191213363804043474226218605333363559}{24775799522428704953949956648951239428990951896529976766608035780760663825080451121296}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times F_5$ (as 20T42):
| A solvable group of order 160 |
| The 25 conjugacy class representatives for $D_4\times F_5$ |
| Character table for $D_4\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{145}) \), 4.2.1492775.2, 5.1.2531250000.5, 10.2.657097893500976562500000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | R | $20$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.10.19.5 | $x^{10} + 55$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ |
| 5.10.19.5 | $x^{10} + 55$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $71$ | 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.1.1 | $x^{2} - 71$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |