Normalized defining polynomial
\( x^{20} - 4 x^{19} + 11 x^{18} - 28 x^{17} + 57 x^{16} - 95 x^{15} + 115 x^{14} - 79 x^{13} - 5 x^{12} + 136 x^{11} - 271 x^{10} + 247 x^{9} + 30 x^{8} - 395 x^{7} + 602 x^{6} - 575 x^{5} + 396 x^{4} - 194 x^{3} + 63 x^{2} - 12 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6504510362736328701171875=-\,5^{10}\cdot 7^{10}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{15} a^{15} + \frac{2}{15} a^{14} + \frac{2}{15} a^{11} + \frac{2}{15} a^{10} - \frac{7}{15} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{4}{15} a^{5} + \frac{2}{15} a^{4} - \frac{1}{15} a^{3} - \frac{7}{15} a^{2} - \frac{1}{15} a + \frac{4}{15}$, $\frac{1}{285} a^{16} + \frac{2}{285} a^{15} - \frac{1}{19} a^{14} + \frac{3}{19} a^{13} + \frac{14}{95} a^{12} - \frac{11}{95} a^{11} - \frac{37}{285} a^{10} - \frac{23}{95} a^{9} + \frac{4}{285} a^{8} - \frac{22}{57} a^{7} - \frac{7}{95} a^{6} + \frac{29}{95} a^{5} + \frac{14}{285} a^{4} + \frac{73}{285} a^{3} + \frac{28}{95} a^{2} - \frac{26}{285} a + \frac{14}{57}$, $\frac{1}{285} a^{17} + \frac{6}{95} a^{14} + \frac{47}{285} a^{13} - \frac{22}{285} a^{12} - \frac{28}{285} a^{11} + \frac{43}{285} a^{10} - \frac{86}{285} a^{9} + \frac{91}{285} a^{8} - \frac{7}{19} a^{7} + \frac{34}{285} a^{6} + \frac{106}{285} a^{5} + \frac{83}{285} a^{4} + \frac{109}{285} a^{3} + \frac{53}{285} a^{2} + \frac{8}{285} a - \frac{64}{285}$, $\frac{1}{285} a^{18} - \frac{1}{285} a^{15} + \frac{3}{95} a^{14} - \frac{22}{285} a^{13} - \frac{28}{285} a^{12} + \frac{1}{57} a^{11} - \frac{29}{285} a^{10} + \frac{34}{285} a^{9} - \frac{29}{285} a^{8} + \frac{53}{285} a^{7} + \frac{11}{285} a^{6} - \frac{88}{285} a^{5} + \frac{71}{285} a^{4} - \frac{23}{285} a^{3} + \frac{47}{95} a^{2} - \frac{3}{19} a + \frac{1}{15}$, $\frac{1}{285} a^{19} - \frac{8}{285} a^{15} + \frac{4}{57} a^{14} + \frac{17}{285} a^{13} + \frac{47}{285} a^{12} - \frac{1}{57} a^{11} - \frac{41}{285} a^{10} - \frac{4}{19} a^{9} - \frac{1}{5} a^{8} + \frac{22}{57} a^{7} + \frac{27}{95} a^{6} - \frac{36}{95} a^{5} - \frac{142}{285} a^{4} + \frac{46}{95} a^{3} + \frac{77}{285} a^{2} - \frac{83}{285} a - \frac{2}{95}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27264.0677779 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_{10}^2:C_2^2$ (as 20T106):
| A solvable group of order 400 |
| The 46 conjugacy class representatives for $C_{10}^2:C_2^2$ |
| Character table for $C_{10}^2:C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.13475.1, 10.2.109853253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | R | $20$ | $20$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $11$ | 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |