Normalized defining polynomial
\( x^{20} + 38 x^{18} + 594 x^{16} + 4992 x^{14} + 24159 x^{12} + 62316 x^{10} + 55353 x^{8} - 14709 x^{6} + 138861 x^{4} + 32561 x^{2} - 8921 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-57678015362481878140979840000000000=-\,2^{16}\cdot 5^{10}\cdot 11\cdot 19^{8}\cdot 29^{6}\cdot 811\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 19, 29, 811$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{4} + \frac{1}{9} a^{2} - \frac{2}{9}$, $\frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{2}{9} a$, $\frac{1}{27} a^{6} - \frac{1}{9} a^{2} + \frac{2}{27}$, $\frac{1}{27} a^{7} - \frac{1}{9} a^{3} + \frac{2}{27} a$, $\frac{1}{81} a^{8} - \frac{1}{81} a^{6} - \frac{1}{27} a^{4} + \frac{5}{81} a^{2} - \frac{2}{81}$, $\frac{1}{81} a^{9} - \frac{1}{81} a^{7} - \frac{1}{27} a^{5} + \frac{5}{81} a^{3} - \frac{2}{81} a$, $\frac{1}{243} a^{10} + \frac{1}{243} a^{8} + \frac{4}{243} a^{6} - \frac{1}{243} a^{4} - \frac{19}{243} a^{2} + \frac{14}{243}$, $\frac{1}{243} a^{11} + \frac{1}{243} a^{9} + \frac{4}{243} a^{7} - \frac{1}{243} a^{5} - \frac{19}{243} a^{3} + \frac{14}{243} a$, $\frac{1}{729} a^{12} + \frac{1}{243} a^{8} - \frac{5}{729} a^{6} - \frac{2}{81} a^{4} + \frac{11}{243} a^{2} - \frac{14}{729}$, $\frac{1}{729} a^{13} + \frac{1}{243} a^{9} - \frac{5}{729} a^{7} - \frac{2}{81} a^{5} + \frac{11}{243} a^{3} - \frac{14}{729} a$, $\frac{1}{2187} a^{14} - \frac{1}{2187} a^{12} + \frac{1}{729} a^{10} - \frac{8}{2187} a^{8} - \frac{13}{2187} a^{6} + \frac{17}{729} a^{4} - \frac{47}{2187} a^{2} + \frac{14}{2187}$, $\frac{1}{2187} a^{15} - \frac{1}{2187} a^{13} + \frac{1}{729} a^{11} - \frac{8}{2187} a^{9} - \frac{13}{2187} a^{7} + \frac{17}{729} a^{5} - \frac{47}{2187} a^{3} + \frac{14}{2187} a$, $\frac{1}{6561} a^{16} + \frac{1}{6561} a^{14} + \frac{1}{6561} a^{12} - \frac{2}{6561} a^{10} - \frac{29}{6561} a^{8} + \frac{25}{6561} a^{6} + \frac{55}{6561} a^{4} - \frac{80}{6561} a^{2} + \frac{28}{6561}$, $\frac{1}{6561} a^{17} + \frac{1}{6561} a^{15} + \frac{1}{6561} a^{13} - \frac{2}{6561} a^{11} - \frac{29}{6561} a^{9} + \frac{25}{6561} a^{7} + \frac{55}{6561} a^{5} - \frac{80}{6561} a^{3} + \frac{28}{6561} a$, $\frac{1}{36964674} a^{18} - \frac{1}{13122} a^{17} - \frac{28}{2053593} a^{16} - \frac{1}{13122} a^{15} - \frac{569}{4107186} a^{14} + \frac{4}{6561} a^{13} + \frac{5699}{12321558} a^{12} - \frac{25}{13122} a^{11} + \frac{4087}{4107186} a^{10} - \frac{26}{6561} a^{9} - \frac{8153}{4107186} a^{8} - \frac{97}{13122} a^{7} + \frac{7159}{12321558} a^{6} - \frac{338}{6561} a^{5} - \frac{26365}{2053593} a^{4} - \frac{122}{6561} a^{3} - \frac{651005}{4107186} a^{2} - \frac{5473}{13122} a + \frac{16651151}{36964674}$, $\frac{1}{36964674} a^{19} + \frac{257}{4107186} a^{17} - \frac{1}{13122} a^{16} - \frac{128}{2053593} a^{15} - \frac{1}{13122} a^{14} - \frac{1813}{12321558} a^{13} + \frac{4}{6561} a^{12} - \frac{2495}{2053593} a^{11} - \frac{25}{13122} a^{10} - \frac{8779}{4107186} a^{9} - \frac{26}{6561} a^{8} - \frac{52291}{6160779} a^{7} - \frac{97}{13122} a^{6} + \frac{87880}{2053593} a^{5} - \frac{338}{6561} a^{4} - \frac{253495}{4107186} a^{3} - \frac{122}{6561} a^{2} - \frac{3512867}{18482337} a - \frac{5473}{13122}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3388982173.69 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 819200 |
| The 275 conjugacy class representatives for t20n955 are not computed |
| Character table for t20n955 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.9932496465625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.8.0.1 | $x^{8} + x^{2} - 2 x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ | |
| 19.5.4.1 | $x^{5} - 19$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ | |
| 19.8.0.1 | $x^{8} - x + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.4 | $x^{4} + 232$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 811 | Data not computed | ||||||