Normalized defining polynomial
\( x^{20} - 10 x^{19} - 195 x^{18} + 2040 x^{17} + 14520 x^{16} - 161532 x^{15} - 492270 x^{14} + 6684000 x^{13} + 2200905 x^{12} - 70749730 x^{11} - 95388407 x^{10} - 132271680 x^{9} + 3154256910 x^{8} + 22947160680 x^{7} - 78897940920 x^{6} - 233407352952 x^{5} + 414207451440 x^{4} + 410323462560 x^{3} + 7262365534560 x^{2} - 3991415434560 x - 79045938974448 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-497631011454939064202060220000000000000000000000000000000000000=-\,2^{38}\cdot 3^{18}\cdot 5^{37}\cdot 11^{10}\cdot 19^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1364.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{18} a^{8} - \frac{1}{18} a^{7} + \frac{1}{9} a^{5} + \frac{1}{18} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{18} a^{9} - \frac{1}{18} a^{7} - \frac{1}{18} a^{6} + \frac{1}{18} a^{4}$, $\frac{1}{108} a^{10} + \frac{1}{108} a^{9} - \frac{1}{54} a^{8} - \frac{1}{27} a^{7} - \frac{1}{108} a^{6} + \frac{11}{108} a^{5} - \frac{1}{18} a^{4}$, $\frac{1}{108} a^{11} - \frac{1}{36} a^{9} - \frac{1}{54} a^{8} + \frac{1}{36} a^{7} - \frac{1}{18} a^{6} + \frac{1}{108} a^{5} - \frac{1}{9} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{324} a^{12} + \frac{1}{324} a^{9} - \frac{1}{108} a^{8} - \frac{5}{81} a^{6} + \frac{13}{108} a^{5} - \frac{1}{18} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{324} a^{13} + \frac{1}{324} a^{10} - \frac{1}{108} a^{9} - \frac{5}{81} a^{7} - \frac{5}{108} a^{6} + \frac{1}{9} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3}$, $\frac{1}{972} a^{14} - \frac{1}{972} a^{13} + \frac{1}{972} a^{11} - \frac{1}{243} a^{10} + \frac{1}{324} a^{9} - \frac{5}{243} a^{8} + \frac{59}{972} a^{7} - \frac{19}{324} a^{6} + \frac{7}{54} a^{5} - \frac{1}{9} a^{4} + \frac{2}{9} a^{3} - \frac{2}{9} a^{2}$, $\frac{1}{24300} a^{15} + \frac{1}{4860} a^{14} + \frac{1}{1620} a^{13} + \frac{1}{2430} a^{12} + \frac{13}{4860} a^{11} - \frac{1}{450} a^{10} - \frac{103}{4860} a^{9} + \frac{19}{1215} a^{8} - \frac{59}{810} a^{7} + \frac{43}{540} a^{6} + \frac{167}{1350} a^{5} + \frac{1}{45} a^{4} + \frac{13}{90} a^{3} + \frac{7}{15} a^{2} - \frac{2}{5} a + \frac{3}{25}$, $\frac{1}{534600} a^{16} + \frac{1}{53460} a^{15} + \frac{7}{26730} a^{14} + \frac{7}{17820} a^{13} + \frac{19}{53460} a^{12} + \frac{73}{267300} a^{11} - \frac{31}{8910} a^{10} - \frac{947}{53460} a^{9} + \frac{301}{106920} a^{8} - \frac{436}{13365} a^{7} - \frac{127}{7425} a^{6} + \frac{19}{2970} a^{5} - \frac{1}{165} a^{4} + \frac{131}{990} a^{3} - \frac{134}{495} a^{2} + \frac{217}{825} a - \frac{1}{55}$, $\frac{1}{534600} a^{17} - \frac{1}{133650} a^{15} + \frac{2}{4455} a^{14} + \frac{73}{53460} a^{13} - \frac{68}{66825} a^{12} + \frac{7}{8910} a^{11} - \frac{1}{12150} a^{10} - \frac{647}{106920} a^{9} + \frac{296}{13365} a^{8} + \frac{7159}{133650} a^{7} - \frac{553}{8910} a^{6} + \frac{406}{2475} a^{5} + \frac{46}{495} a^{4} + \frac{281}{990} a^{3} + \frac{916}{2475} a^{2} - \frac{2}{11} a - \frac{16}{275}$, $\frac{1}{16029292780084887051219748549800} a^{18} + \frac{251105746637813937128087}{485736144851057183370295410600} a^{17} + \frac{21001922710087190885812}{74209688796689291903795132175} a^{16} - \frac{138114740026283354589527}{6746335345153571991254102925} a^{15} - \frac{54512251926307934147727157}{178103253112054300569108317220} a^{14} - \frac{364186786476650299517706127}{1335774398340407254268312379150} a^{13} - \frac{405882894922375086886606237}{1335774398340407254268312379150} a^{12} + \frac{193225622504009516365340981}{98946251728919055871726842900} a^{11} + \frac{5865693749765525443703480351}{5343097593361629017073249516600} a^{10} - \frac{62330769004508226754774878299}{3205858556016977410243949709960} a^{9} - \frac{8677235056036692168044221466}{667887199170203627134156189575} a^{8} + \frac{150510246998295750239231430841}{2671548796680814508536624758300} a^{7} - \frac{1794279988545539930154227881}{24736562932229763967931710725} a^{6} - \frac{1509669918331732198911411637}{74209688796689291903795132175} a^{5} + \frac{1642525103588854832995454002}{14841937759337858380759026435} a^{4} + \frac{1744457138523960414183335641}{5497013984939947548429269050} a^{3} + \frac{3950832298908802937837323607}{24736562932229763967931710725} a^{2} + \frac{3661587108468620470275890443}{8245520977409921322643903575} a - \frac{88841084406889896862585006}{2748506992469973774214634525}$, $\frac{1}{6982593285253802439749014963669224105838561527426269927169000} a^{19} + \frac{10798374778872154770544903381}{2327531095084600813249671654556408035279520509142089975723000} a^{18} + \frac{687001201245093236211888615713366844533721336985253179}{1163765547542300406624835827278204017639760254571044987861500} a^{17} + \frac{791195274728935731872780644833413889938557136306031067}{1163765547542300406624835827278204017639760254571044987861500} a^{16} + \frac{2928286585847237103115972523800972101311173706908167911}{1163765547542300406624835827278204017639760254571044987861500} a^{15} - \frac{136469974339300306742393069092447082983424772052343564213}{387921849180766802208278609092734672546586751523681662620500} a^{14} - \frac{43408773539344497996467212548734012242889731652164411859}{64653641530127800368046434848789112091097791920613610436750} a^{13} + \frac{1500044448771578868901167312927710096963842029828065248679}{1163765547542300406624835827278204017639760254571044987861500} a^{12} + \frac{1981226797221847895519232195974306874156079917279771400763}{775843698361533604416557218185469345093173503047363325241000} a^{11} + \frac{4738975951921912735174192453088219793550894994027115958211}{6982593285253802439749014963669224105838561527426269927169000} a^{10} - \frac{9862755462394763161611546186003116671707654628779235524493}{387921849180766802208278609092734672546586751523681662620500} a^{9} - \frac{104536331692127207382790530391873666710426638932990415098}{290941386885575101656208956819551004409940063642761246965375} a^{8} + \frac{53309918783823539662907581447397294435225129103917463093499}{1163765547542300406624835827278204017639760254571044987861500} a^{7} + \frac{6197710318521824794289895627899691640384039717063339832216}{96980462295191700552069652273183668136646687880920415655125} a^{6} - \frac{10270972106838412055357226155805372246891463933977622480103}{64653641530127800368046434848789112091097791920613610436750} a^{5} + \frac{157346249205950799916903485277226178220803222885916689959}{1959201258488721223274134389357245820942357330927685164750} a^{4} - \frac{157413703030659757734318701306098106936381869381246494884}{10775606921687966728007739141464852015182965320102268406125} a^{3} - \frac{3097771584308689125140254445200202884307676786961348907302}{10775606921687966728007739141464852015182965320102268406125} a^{2} - \frac{1214425963163750107299713705295903745897744234193897516602}{3591868973895988909335913047154950671727655106700756135375} a + \frac{370704629752596373114292810229583451394595456590275858913}{1197289657965329636445304349051650223909218368900252045125}$
Class group and class number
Not computed
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times F_5$ (as 20T42):
| A solvable group of order 160 |
| The 25 conjugacy class representatives for $D_4\times F_5$ |
| Character table for $D_4\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{66}) \), 4.2.6621120.8, 5.1.2531250000.13, 10.2.6339933666000000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.19.1 | $x^{10} - 2$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ |
| 2.10.19.1 | $x^{10} - 2$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $3$ | 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ |
| 5.5.9.4 | $x^{5} + 30$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.10.19.3 | $x^{10} + 30$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |