Normalized defining polynomial
\( x^{20} - 2 x^{19} + 9 x^{18} - 12 x^{17} + 37 x^{16} - 86 x^{15} - 14 x^{14} - 46 x^{13} - 40 x^{12} + 58 x^{11} + 180 x^{10} - 130 x^{9} + 364 x^{8} - 258 x^{7} - 90 x^{6} - 42 x^{5} - 425 x^{4} + 128 x^{3} - 197 x^{2} + 70 x - 17 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4489512207214609404507717632=-\,2^{26}\cdot 19^{8}\cdot 83^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{3} + \frac{1}{4} a$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{14} + \frac{1}{8} a^{10} - \frac{1}{4} a^{8} + \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{2} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{16} a^{17} - \frac{1}{16} a^{16} + \frac{1}{16} a^{15} - \frac{1}{16} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} + \frac{3}{16} a^{11} - \frac{3}{16} a^{10} + \frac{1}{8} a^{9} + \frac{1}{8} a^{8} + \frac{3}{16} a^{7} + \frac{5}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{16} a^{3} + \frac{7}{16} a^{2} + \frac{1}{16} a + \frac{3}{16}$, $\frac{1}{2176} a^{18} + \frac{1}{544} a^{17} + \frac{13}{544} a^{16} - \frac{21}{272} a^{15} + \frac{1}{128} a^{14} + \frac{11}{272} a^{13} - \frac{251}{2176} a^{12} + \frac{15}{272} a^{11} + \frac{263}{2176} a^{10} + \frac{27}{544} a^{9} + \frac{385}{2176} a^{8} - \frac{83}{272} a^{7} + \frac{431}{2176} a^{6} + \frac{37}{136} a^{5} + \frac{771}{2176} a^{4} - \frac{61}{272} a^{3} - \frac{21}{68} a^{2} + \frac{53}{272} a + \frac{27}{128}$, $\frac{1}{647461048612244273408} a^{19} + \frac{98446439584776405}{647461048612244273408} a^{18} + \frac{2293776623980685881}{80932631076530534176} a^{17} + \frac{8173059146684093767}{161865262153061068352} a^{16} + \frac{11247965636844361113}{647461048612244273408} a^{15} + \frac{26010266258519656009}{647461048612244273408} a^{14} + \frac{62023762854887321501}{647461048612244273408} a^{13} - \frac{21691461122491117107}{647461048612244273408} a^{12} + \frac{145803738427536824527}{647461048612244273408} a^{11} - \frac{39327910058405311757}{647461048612244273408} a^{10} - \frac{40295752749267159155}{647461048612244273408} a^{9} - \frac{6185922607450805399}{38085944036014369024} a^{8} + \frac{315736199114961996135}{647461048612244273408} a^{7} + \frac{131538961215155313887}{647461048612244273408} a^{6} + \frac{21558182151841061011}{647461048612244273408} a^{5} + \frac{177643807015721018635}{647461048612244273408} a^{4} - \frac{33512373285554646251}{80932631076530534176} a^{3} + \frac{37873829014686651103}{80932631076530534176} a^{2} - \frac{134435642002365335997}{647461048612244273408} a - \frac{15353963909708286789}{38085944036014369024}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 784154.410303 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 149 conjugacy class representatives for t20n965 are not computed |
| Character table for t20n965 is not computed |
Intermediate fields
| 5.3.29963.1, 10.6.919328121856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | $16{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.12.18.58 | $x^{12} + 4 x^{11} + 6 x^{10} + 4 x^{9} - 4 x^{7} - 4 x^{6} + 8 x^{5} - 4 x^{4} + 8 x^{3} + 8 x^{2} + 8$ | $4$ | $3$ | $18$ | 12T99 | $[2, 2, 2, 2, 2]^{6}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 83 | Data not computed | ||||||