Normalized defining polynomial
\( x^{20} - 8 x^{18} + 34 x^{16} + 42 x^{14} - 724 x^{12} + 902 x^{10} + 837 x^{8} - 2882 x^{6} - 1527 x^{4} - 102 x^{2} - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4432204969617689467720296300544=-\,2^{50}\cdot 89^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{12} a^{16} - \frac{1}{3} a^{14} + \frac{1}{12} a^{12} - \frac{1}{2} a^{10} + \frac{1}{4} a^{8} - \frac{1}{3} a^{6} + \frac{1}{6} a^{4} + \frac{1}{6} a^{2} - \frac{5}{12}$, $\frac{1}{12} a^{17} - \frac{1}{3} a^{15} + \frac{1}{12} a^{13} - \frac{1}{2} a^{11} + \frac{1}{4} a^{9} - \frac{1}{3} a^{7} + \frac{1}{6} a^{5} + \frac{1}{6} a^{3} - \frac{5}{12} a$, $\frac{1}{7121263713880632} a^{18} - \frac{51602553474089}{7121263713880632} a^{16} - \frac{1}{2} a^{15} - \frac{2022405865904179}{7121263713880632} a^{14} - \frac{1}{2} a^{13} - \frac{217033327318747}{7121263713880632} a^{12} - \frac{296127161199989}{2373754571293544} a^{10} + \frac{3266643839195729}{7121263713880632} a^{8} - \frac{1}{2} a^{7} + \frac{127193463524871}{1186877285646772} a^{6} - \frac{1}{2} a^{5} - \frac{203080345916521}{593438642823386} a^{4} - \frac{1}{2} a^{3} - \frac{2798144895745519}{7121263713880632} a^{2} - \frac{1}{2} a + \frac{1645655414423717}{7121263713880632}$, $\frac{1}{7121263713880632} a^{19} - \frac{51602553474089}{7121263713880632} a^{17} - \frac{2022405865904179}{7121263713880632} a^{15} - \frac{1}{2} a^{14} - \frac{217033327318747}{7121263713880632} a^{13} - \frac{1}{2} a^{12} - \frac{296127161199989}{2373754571293544} a^{11} + \frac{3266643839195729}{7121263713880632} a^{9} + \frac{127193463524871}{1186877285646772} a^{7} - \frac{1}{2} a^{6} - \frac{203080345916521}{593438642823386} a^{5} - \frac{1}{2} a^{4} - \frac{2798144895745519}{7121263713880632} a^{3} - \frac{1}{2} a^{2} + \frac{1645655414423717}{7121263713880632} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23928339.409 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n797 are not computed |
| Character table for t20n797 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 5.3.31684.1, 10.6.8223751012352.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.20.53 | $x^{8} + 4 x^{5} + 2 x^{4} + 2$ | $8$ | $1$ | $20$ | $Q_8:C_2$ | $[2, 3, 3]^{2}$ |
| 2.12.30.162 | $x^{12} - 6 x^{10} - 3 x^{8} + 4 x^{6} - 5 x^{4} + 2 x^{2} - 1$ | $4$ | $3$ | $30$ | 12T134 | $[2, 2, 2, 3, 7/2, 7/2, 7/2]^{3}$ | |
| 89 | Data not computed | ||||||