Normalized defining polynomial
\( x^{20} - 3 x^{19} + 2 x^{18} - 2 x^{17} + 9 x^{16} - 4 x^{15} - 7 x^{14} - 8 x^{13} + 12 x^{12} + \cdots + 1 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[2, 9]$ |
| |
| Discriminant: |
\(-44283824745892362441775\)
\(\medspace = -\,5^{2}\cdot 37^{2}\cdot 2239\cdot 4903^{4}\)
|
| |
| Root discriminant: | \(13.56\) |
| |
| Galois root discriminant: | $5^{1/2}37^{1/2}2239^{1/2}4903^{1/2}\approx 45065.46510355796$ | ||
| Ramified primes: |
\(5\), \(37\), \(2239\), \(4903\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-2239}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5}a^{18}+\frac{1}{5}a^{16}+\frac{1}{5}a^{15}+\frac{1}{5}a^{14}-\frac{2}{5}a^{13}+\frac{1}{5}a^{12}+\frac{2}{5}a^{11}+\frac{2}{5}a^{10}-\frac{2}{5}a^{9}-\frac{1}{5}a^{8}-\frac{2}{5}a^{7}-\frac{2}{5}a^{6}-\frac{2}{5}a^{5}-\frac{1}{5}a^{4}-\frac{1}{5}a^{3}-\frac{1}{5}a^{2}-\frac{2}{5}a+\frac{1}{5}$, $\frac{1}{710512465}a^{19}-\frac{756981}{54654805}a^{18}+\frac{98950126}{710512465}a^{17}-\frac{329401302}{710512465}a^{16}+\frac{190656253}{710512465}a^{15}-\frac{55092358}{142102493}a^{14}+\frac{327219647}{710512465}a^{13}-\frac{340164921}{710512465}a^{12}-\frac{213439229}{710512465}a^{11}+\frac{15893309}{54654805}a^{10}-\frac{55534489}{142102493}a^{9}-\frac{16050188}{54654805}a^{8}+\frac{349631304}{710512465}a^{7}+\frac{188935584}{710512465}a^{6}+\frac{63509811}{142102493}a^{5}+\frac{209009472}{710512465}a^{4}+\frac{279627077}{710512465}a^{3}+\frac{299353401}{710512465}a^{2}-\frac{281449548}{710512465}a+\frac{279113267}{710512465}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $10$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{245608224}{710512465}a^{19}-\frac{55025431}{54654805}a^{18}+\frac{238618089}{710512465}a^{17}+\frac{147492361}{710512465}a^{16}+\frac{1622465266}{710512465}a^{15}-\frac{165162151}{710512465}a^{14}-\frac{712162627}{142102493}a^{13}-\frac{209977239}{142102493}a^{12}+\frac{3327130132}{710512465}a^{11}+\frac{291037972}{54654805}a^{10}-\frac{1340082398}{710512465}a^{9}-\frac{20761090}{10930961}a^{8}-\frac{5562118617}{710512465}a^{7}-\frac{1562531817}{710512465}a^{6}+\frac{5132023592}{710512465}a^{5}+\frac{6587573444}{710512465}a^{4}-\frac{1044022881}{710512465}a^{3}-\frac{806914197}{142102493}a^{2}-\frac{238945114}{142102493}a+\frac{97464682}{710512465}$, $\frac{6541133}{710512465}a^{19}+\frac{4245268}{54654805}a^{18}-\frac{369046247}{710512465}a^{17}+\frac{596470892}{710512465}a^{16}-\frac{480610018}{710512465}a^{15}+\frac{1259573218}{710512465}a^{14}-\frac{402450781}{142102493}a^{13}+\frac{86842469}{142102493}a^{12}-\frac{553287816}{710512465}a^{11}+\frac{217499614}{54654805}a^{10}-\frac{1136956091}{710512465}a^{9}-\frac{2077893}{10930961}a^{8}-\frac{1577920114}{710512465}a^{7}-\frac{803737409}{710512465}a^{6}+\frac{1126094169}{710512465}a^{5}+\frac{2606068188}{710512465}a^{4}+\frac{1257231458}{710512465}a^{3}-\frac{480530420}{142102493}a^{2}-\frac{204017669}{142102493}a-\frac{55175766}{710512465}$, $a$, $\frac{7730552}{54654805}a^{19}-\frac{25260599}{54654805}a^{18}+\frac{8260427}{54654805}a^{17}+\frac{11389533}{54654805}a^{16}+\frac{60450403}{54654805}a^{15}-\frac{7755938}{54654805}a^{14}-\frac{32051545}{10930961}a^{13}-\frac{8734791}{10930961}a^{12}+\frac{133565111}{54654805}a^{11}+\frac{202305983}{54654805}a^{10}-\frac{28381449}{54654805}a^{9}-\frac{26649649}{10930961}a^{8}-\frac{264512156}{54654805}a^{7}-\frac{58492971}{54654805}a^{6}+\frac{236470326}{54654805}a^{5}+\frac{373320187}{54654805}a^{4}+\frac{42483807}{54654805}a^{3}-\frac{46956829}{10930961}a^{2}-\frac{34508938}{10930961}a-\frac{20071704}{54654805}$, $\frac{15398891}{142102493}a^{19}-\frac{407281}{10930961}a^{18}-\frac{54878341}{142102493}a^{17}-\frac{37359344}{142102493}a^{16}+\frac{85730744}{142102493}a^{15}+\frac{230997800}{142102493}a^{14}-\frac{11405159}{142102493}a^{13}-\frac{337885631}{142102493}a^{12}-\frac{352122436}{142102493}a^{11}+\frac{24131808}{10930961}a^{10}+\frac{384632289}{142102493}a^{9}+\frac{21213769}{10930961}a^{8}-\frac{152014841}{142102493}a^{7}-\frac{588315020}{142102493}a^{6}-\frac{664389253}{142102493}a^{5}+\frac{182432753}{142102493}a^{4}+\frac{619848465}{142102493}a^{3}+\frac{301921122}{142102493}a^{2}+\frac{21829402}{142102493}a+\frac{71961530}{142102493}$, $\frac{167538451}{710512465}a^{19}-\frac{42635894}{54654805}a^{18}+\frac{455615801}{710512465}a^{17}-\frac{437725826}{710512465}a^{16}+\frac{1901796419}{710512465}a^{15}-\frac{1535250599}{710512465}a^{14}-\frac{119480137}{142102493}a^{13}-\frac{439761870}{142102493}a^{12}+\frac{3717330663}{710512465}a^{11}+\frac{71519223}{54654805}a^{10}+\frac{282931913}{710512465}a^{9}-\frac{29303212}{10930961}a^{8}-\frac{3102564278}{710512465}a^{7}-\frac{947337808}{710512465}a^{6}+\frac{3445929913}{710512465}a^{5}+\frac{4183541341}{710512465}a^{4}-\frac{1023622804}{710512465}a^{3}-\frac{429232530}{142102493}a^{2}-\frac{202533067}{142102493}a-\frac{538511602}{710512465}$, $\frac{17456731}{54654805}a^{19}-\frac{45823417}{54654805}a^{18}+\frac{22428881}{54654805}a^{17}-\frac{53957741}{54654805}a^{16}+\frac{194473324}{54654805}a^{15}-\frac{76075404}{54654805}a^{14}-\frac{2975546}{10930961}a^{13}-\frac{67711234}{10930961}a^{12}+\frac{230935723}{54654805}a^{11}+\frac{118877429}{54654805}a^{10}+\frac{238070553}{54654805}a^{9}-\frac{26748209}{10930961}a^{8}-\frac{254209473}{54654805}a^{7}-\frac{343699138}{54654805}a^{6}+\frac{58484248}{54654805}a^{5}+\frac{420875246}{54654805}a^{4}+\frac{219403056}{54654805}a^{3}-\frac{11487088}{10930961}a^{2}-\frac{26172509}{10930961}a-\frac{20260802}{54654805}$, $\frac{2623352}{142102493}a^{19}-\frac{21539132}{54654805}a^{18}+\frac{113339364}{142102493}a^{17}+\frac{60848439}{710512465}a^{16}-\frac{115190136}{710512465}a^{15}-\frac{987103211}{710512465}a^{14}-\frac{1553178308}{710512465}a^{13}+\frac{3606639079}{710512465}a^{12}+\frac{556051488}{710512465}a^{11}+\frac{1074401}{54654805}a^{10}-\frac{4304431728}{710512465}a^{9}+\frac{40934692}{54654805}a^{8}-\frac{1364888553}{710512465}a^{7}+\frac{4826637897}{710512465}a^{6}+\frac{2955438547}{710512465}a^{5}-\frac{1321833489}{710512465}a^{4}-\frac{4483082564}{710512465}a^{3}-\frac{1376284119}{710512465}a^{2}+\frac{1349793697}{710512465}a+\frac{320882109}{710512465}$, $\frac{13098043}{142102493}a^{19}+\frac{122594}{54654805}a^{18}-\frac{29430225}{142102493}a^{17}-\frac{531844048}{710512465}a^{16}+\frac{526555832}{710512465}a^{15}+\frac{884843192}{710512465}a^{14}+\frac{1281040031}{710512465}a^{13}-\frac{2180118658}{710512465}a^{12}-\frac{2404217381}{710512465}a^{11}-\frac{15949412}{54654805}a^{10}+\frac{4033365501}{710512465}a^{9}+\frac{194442586}{54654805}a^{8}-\frac{581684719}{710512465}a^{7}-\frac{3726528779}{710512465}a^{6}-\frac{5477414849}{710512465}a^{5}+\frac{184271563}{710512465}a^{4}+\frac{4710760713}{710512465}a^{3}+\frac{4436831238}{710512465}a^{2}-\frac{734104079}{710512465}a-\frac{914570743}{710512465}$, $\frac{298466143}{710512465}a^{19}-\frac{62458222}{54654805}a^{18}+\frac{443623988}{710512465}a^{17}-\frac{712703338}{710512465}a^{16}+\frac{2729432077}{710512465}a^{15}-\frac{878465022}{710512465}a^{14}-\frac{228913807}{142102493}a^{13}-\frac{737303880}{142102493}a^{12}+\frac{3165251684}{710512465}a^{11}+\frac{120896564}{54654805}a^{10}+\frac{2608858969}{710512465}a^{9}-\frac{16128194}{10930961}a^{8}-\frac{4186357374}{710512465}a^{7}-\frac{4279545394}{710512465}a^{6}+\frac{1320294734}{710512465}a^{5}+\frac{5269342113}{710512465}a^{4}+\frac{2285120658}{710512465}a^{3}-\frac{188585884}{142102493}a^{2}-\frac{30534502}{142102493}a-\frac{282750841}{710512465}$
|
| |
| Regulator: | \( 1195.16140002 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{9}\cdot 1195.16140002 \cdot 1}{2\cdot\sqrt{44283824745892362441775}}\cr\approx \mathstrut & 0.173361560480 \end{aligned}\] (assuming GRH)
Galois group
$C_2^9.C_2^6:S_5$ (as 20T1015):
| A non-solvable group of order 3932160 |
| The 506 conjugacy class representatives for $C_2^9.C_2^6:S_5$ |
| Character table for $C_2^9.C_2^6:S_5$ |
Intermediate fields
| 5.3.4903.1, 10.2.889458133.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.10.0.1}{10} }^{2}$ | ${\href{/padicField/3.8.0.1}{8} }{,}\,{\href{/padicField/3.6.0.1}{6} }^{2}$ | R | ${\href{/padicField/7.5.0.1}{5} }^{4}$ | ${\href{/padicField/11.5.0.1}{5} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/41.8.0.1}{8} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}$ | ${\href{/padicField/47.10.0.1}{10} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.12.0.1}{12} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| 5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 5.2.2.2a1.1 | $x^{4} + 8 x^{3} + 20 x^{2} + 21 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ | |
| 5.12.1.0a1.1 | $x^{12} + x^{7} + x^{6} + 4 x^{4} + 4 x^{3} + 3 x^{2} + 2 x + 2$ | $1$ | $12$ | $0$ | $C_{12}$ | $$[\ ]^{12}$$ | |
|
\(37\)
| $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{37}$ | $x + 35$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 37.2.1.0a1.1 | $x^{2} + 33 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 37.2.1.0a1.1 | $x^{2} + 33 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 37.2.1.0a1.1 | $x^{2} + 33 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 37.4.1.0a1.1 | $x^{4} + 6 x^{2} + 24 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
| 37.2.2.2a1.2 | $x^{4} + 66 x^{3} + 1093 x^{2} + 132 x + 41$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 37.4.1.0a1.1 | $x^{4} + 6 x^{2} + 24 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(2239\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | ||
|
\(4903\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $4$ | $2$ | $2$ | $2$ | ||||
| Deg $12$ | $1$ | $12$ | $0$ | $C_{12}$ | $$[\ ]^{12}$$ |