Normalized defining polynomial
\( x^{20} - 5x^{18} + 15x^{14} - 120x^{12} + 371x^{10} - 505x^{8} + 420x^{6} - 140x^{4} - 80x^{2} - 16 \)
Invariants
Degree: | $20$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[2, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-400000000000000000000000000\)
\(\medspace = -\,2^{28}\cdot 5^{26}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(21.38\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}5^{13/10}\approx 22.91954538992328$ | ||
Ramified primes: |
\(2\), \(5\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-1}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{5}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{8}+\frac{1}{4}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{9}+\frac{1}{4}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{8}a^{14}-\frac{1}{8}a^{13}-\frac{1}{8}a^{12}-\frac{1}{4}a^{11}+\frac{1}{8}a^{10}-\frac{1}{8}a^{9}+\frac{1}{8}a^{8}+\frac{1}{8}a^{6}+\frac{1}{8}a^{5}+\frac{3}{8}a^{4}+\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{8}a^{15}-\frac{1}{8}a^{12}-\frac{1}{8}a^{11}-\frac{1}{4}a^{9}-\frac{1}{8}a^{8}+\frac{1}{8}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}+\frac{1}{8}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{8}a^{16}-\frac{1}{8}a^{13}-\frac{1}{8}a^{12}-\frac{1}{4}a^{10}-\frac{1}{8}a^{9}+\frac{1}{8}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{6}+\frac{1}{8}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{17}-\frac{1}{8}a^{12}-\frac{1}{4}a^{9}-\frac{1}{8}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{3}{8}a^{5}+\frac{1}{8}a^{4}+\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{5371420912}a^{18}-\frac{282229565}{5371420912}a^{16}+\frac{12883785}{671427614}a^{14}-\frac{45904041}{413186224}a^{12}-\frac{1}{4}a^{11}-\frac{5177735}{1342855228}a^{10}-\frac{90887453}{413186224}a^{8}-\frac{1}{4}a^{7}+\frac{356154411}{5371420912}a^{6}-\frac{3427641}{51648278}a^{4}-\frac{1}{4}a^{3}-\frac{147852691}{335713807}a^{2}+\frac{150363771}{671427614}$, $\frac{1}{5371420912}a^{19}-\frac{282229565}{5371420912}a^{17}+\frac{12883785}{671427614}a^{15}-\frac{45904041}{413186224}a^{13}-\frac{5177735}{1342855228}a^{11}-\frac{90887453}{413186224}a^{9}+\frac{356154411}{5371420912}a^{7}-\frac{3427641}{51648278}a^{5}-\frac{147852691}{335713807}a^{3}+\frac{150363771}{671427614}a$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{96375637}{5371420912}a^{19}-\frac{436139441}{5371420912}a^{17}-\frac{36128607}{1342855228}a^{15}+\frac{88272527}{413186224}a^{13}-\frac{1420915601}{671427614}a^{11}+\frac{2388498427}{413186224}a^{9}-\frac{40395385653}{5371420912}a^{7}+\frac{665800941}{103296556}a^{5}-\frac{799846319}{671427614}a^{3}-\frac{1195424523}{671427614}a$, $\frac{38680469}{2685710456}a^{18}-\frac{149597355}{2685710456}a^{16}-\frac{36153391}{671427614}a^{14}+\frac{25513269}{206593112}a^{12}-\frac{1103743339}{671427614}a^{10}+\frac{732530269}{206593112}a^{8}-\frac{11273182721}{2685710456}a^{6}+\frac{170975229}{51648278}a^{4}+\frac{6830127}{335713807}a^{2}-\frac{144958108}{335713807}$, $\frac{20459485}{2685710456}a^{18}-\frac{114122551}{2685710456}a^{16}+\frac{13654737}{671427614}a^{14}+\frac{23597285}{206593112}a^{12}-\frac{642622853}{671427614}a^{10}+\frac{703334429}{206593112}a^{8}-\frac{14265565573}{2685710456}a^{6}+\frac{292069779}{51648278}a^{4}-\frac{2487516601}{671427614}a^{2}-\frac{188766650}{335713807}$, $\frac{94383325}{2685710456}a^{19}+\frac{96375637}{5371420912}a^{18}-\frac{246188055}{1342855228}a^{17}-\frac{436139441}{5371420912}a^{16}+\frac{114122551}{2685710456}a^{15}-\frac{36128607}{1342855228}a^{14}+\frac{104702379}{206593112}a^{13}+\frac{88272527}{413186224}a^{12}-\frac{11632763705}{2685710456}a^{11}-\frac{1420915601}{671427614}a^{10}+\frac{2891284999}{206593112}a^{9}+\frac{2388498427}{413186224}a^{8}-\frac{28403463351}{1342855228}a^{7}-\frac{40395385653}{5371420912}a^{6}+\frac{4146658621}{206593112}a^{5}+\frac{665800941}{103296556}a^{4}-\frac{3550161751}{335713807}a^{3}-\frac{799846319}{671427614}a^{2}+\frac{599850101}{671427614}a-\frac{1195424523}{671427614}$, $\frac{37898295}{5371420912}a^{19}+\frac{5221825}{5371420912}a^{18}-\frac{164181579}{5371420912}a^{17}+\frac{231245}{5371420912}a^{16}-\frac{26380845}{2685710456}a^{15}-\frac{16916543}{1342855228}a^{14}+\frac{19681807}{413186224}a^{13}-\frac{8503589}{413186224}a^{12}-\frac{2195116387}{2685710456}a^{11}-\frac{178905823}{1342855228}a^{10}+\frac{915684887}{413186224}a^{9}-\frac{75195493}{413186224}a^{8}-\frac{18062107389}{5371420912}a^{7}+\frac{744898527}{5371420912}a^{6}+\frac{940740983}{206593112}a^{5}-\frac{20147453}{206593112}a^{4}-\frac{4325212127}{1342855228}a^{3}+\frac{1562134787}{1342855228}a^{2}+\frac{847971469}{671427614}a+\frac{69777878}{335713807}$, $\frac{37898295}{5371420912}a^{19}+\frac{72139113}{5371420912}a^{18}-\frac{164181579}{5371420912}a^{17}-\frac{299425955}{5371420912}a^{16}-\frac{26380845}{2685710456}a^{15}-\frac{55390239}{1342855228}a^{14}+\frac{19681807}{413186224}a^{13}+\frac{59530127}{413186224}a^{12}-\frac{2195116387}{2685710456}a^{11}-\frac{2028580855}{1342855228}a^{10}+\frac{915684887}{413186224}a^{9}+\frac{1540256031}{413186224}a^{8}-\frac{18062107389}{5371420912}a^{7}-\frac{23291263969}{5371420912}a^{6}+\frac{940740983}{206593112}a^{5}+\frac{704048369}{206593112}a^{4}-\frac{4325212127}{1342855228}a^{3}-\frac{1534814279}{1342855228}a^{2}+\frac{847971469}{671427614}a-\frac{214735986}{335713807}$, $\frac{53401093}{5371420912}a^{19}-\frac{76270465}{5371420912}a^{18}-\frac{124787659}{5371420912}a^{17}+\frac{197044873}{5371420912}a^{16}-\frac{264661479}{2685710456}a^{15}+\frac{339184405}{2685710456}a^{14}+\frac{11222445}{413186224}a^{13}-\frac{18828277}{413186224}a^{12}-\frac{2612214047}{2685710456}a^{11}+\frac{3788434491}{2685710456}a^{10}+\frac{325857361}{413186224}a^{9}-\frac{644100093}{413186224}a^{8}+\frac{6358820881}{5371420912}a^{7}-\frac{3430761577}{5371420912}a^{6}-\frac{86269343}{51648278}a^{5}+\frac{208657783}{206593112}a^{4}+\frac{1281807675}{335713807}a^{3}-\frac{4895562547}{1342855228}a^{2}-\frac{11992912}{335713807}a-\frac{204051810}{335713807}$, $\frac{96375637}{5371420912}a^{19}-\frac{412459}{122077748}a^{18}-\frac{436139441}{5371420912}a^{17}+\frac{1240631}{61038874}a^{16}-\frac{36128607}{1342855228}a^{15}-\frac{1213311}{122077748}a^{14}+\frac{88272527}{413186224}a^{13}-\frac{792089}{9390596}a^{12}-\frac{1420915601}{671427614}a^{11}+\frac{53704597}{122077748}a^{10}+\frac{2388498427}{413186224}a^{9}-\frac{14551629}{9390596}a^{8}-\frac{40395385653}{5371420912}a^{7}+\frac{66625659}{30519437}a^{6}+\frac{665800941}{103296556}a^{5}-\frac{6175171}{9390596}a^{4}-\frac{799846319}{671427614}a^{3}-\frac{11801224}{30519437}a^{2}-\frac{1195424523}{671427614}a+\frac{16556673}{30519437}$, $\frac{30744921}{2685710456}a^{18}-\frac{67304607}{2685710456}a^{16}-\frac{139766049}{1342855228}a^{14}-\frac{9022923}{206593112}a^{12}-\frac{1568202771}{1342855228}a^{10}+\frac{203575069}{206593112}a^{8}+\frac{258451529}{2685710456}a^{6}+\frac{52362920}{25824139}a^{4}+\frac{618509043}{671427614}a^{2}+\frac{124185309}{335713807}$, $\frac{32080525}{5371420912}a^{19}-\frac{155033513}{5371420912}a^{17}+\frac{2325361}{1342855228}a^{15}+\frac{26732271}{413186224}a^{13}-\frac{246706209}{335713807}a^{11}+\frac{900085363}{413186224}a^{9}-\frac{18907269701}{5371420912}a^{7}+\frac{395213491}{103296556}a^{5}-\frac{1691367907}{671427614}a^{3}+\frac{564557751}{671427614}a$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 320036.323885 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{9}\cdot 320036.323885 \cdot 1}{2\cdot\sqrt{400000000000000000000000000}}\cr\approx \mathstrut & 0.488447721933 \end{aligned}\] (assuming GRH)
Galois group
A solvable group of order 40 |
The 13 conjugacy class representatives for $D_{20}$ |
Character table for $D_{20}$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.2.400.1, 5.1.250000.1, 10.2.312500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | deg 40 |
Degree 20 sibling: | 20.0.320000000000000000000000000.1 |
Minimal sibling: | 20.0.320000000000000000000000000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $20$ | R | $20$ | ${\href{/padicField/11.2.0.1}{2} }^{9}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.2.0.1}{2} }^{10}$ | ${\href{/padicField/17.2.0.1}{2} }^{10}$ | ${\href{/padicField/19.2.0.1}{2} }^{9}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | $20$ | ${\href{/padicField/29.5.0.1}{5} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{9}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{10}$ | ${\href{/padicField/41.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/padicField/53.2.0.1}{2} }^{10}$ | ${\href{/padicField/59.2.0.1}{2} }^{9}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.4.4.3 | $x^{4} + 2 x^{3} + 4 x^{2} + 12 x + 12$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
2.8.12.13 | $x^{8} + 8 x^{7} + 28 x^{6} + 58 x^{5} + 87 x^{4} + 98 x^{3} + 58 x^{2} - 2 x + 1$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
2.8.12.13 | $x^{8} + 8 x^{7} + 28 x^{6} + 58 x^{5} + 87 x^{4} + 98 x^{3} + 58 x^{2} - 2 x + 1$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
\(5\)
| Deg $20$ | $10$ | $2$ | $26$ |