Properties

Label 20.2.400...000.1
Degree $20$
Signature $[2, 9]$
Discriminant $-4.000\times 10^{26}$
Root discriminant \(21.38\)
Ramified primes $2,5$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $D_{20}$ (as 20T10)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^18 + 15*x^14 - 120*x^12 + 371*x^10 - 505*x^8 + 420*x^6 - 140*x^4 - 80*x^2 - 16)
 
gp: K = bnfinit(y^20 - 5*y^18 + 15*y^14 - 120*y^12 + 371*y^10 - 505*y^8 + 420*y^6 - 140*y^4 - 80*y^2 - 16, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 5*x^18 + 15*x^14 - 120*x^12 + 371*x^10 - 505*x^8 + 420*x^6 - 140*x^4 - 80*x^2 - 16);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 - 5*x^18 + 15*x^14 - 120*x^12 + 371*x^10 - 505*x^8 + 420*x^6 - 140*x^4 - 80*x^2 - 16)
 

\( x^{20} - 5x^{18} + 15x^{14} - 120x^{12} + 371x^{10} - 505x^{8} + 420x^{6} - 140x^{4} - 80x^{2} - 16 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[2, 9]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-400000000000000000000000000\) \(\medspace = -\,2^{28}\cdot 5^{26}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(21.38\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}5^{13/10}\approx 22.91954538992328$
Ramified primes:   \(2\), \(5\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{10}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{11}-\frac{1}{2}a^{5}$, $\frac{1}{4}a^{12}-\frac{1}{4}a^{8}+\frac{1}{4}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{13}-\frac{1}{4}a^{9}+\frac{1}{4}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{8}a^{14}-\frac{1}{8}a^{13}-\frac{1}{8}a^{12}-\frac{1}{4}a^{11}+\frac{1}{8}a^{10}-\frac{1}{8}a^{9}+\frac{1}{8}a^{8}+\frac{1}{8}a^{6}+\frac{1}{8}a^{5}+\frac{3}{8}a^{4}+\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{8}a^{15}-\frac{1}{8}a^{12}-\frac{1}{8}a^{11}-\frac{1}{4}a^{9}-\frac{1}{8}a^{8}+\frac{1}{8}a^{7}-\frac{1}{4}a^{6}-\frac{1}{4}a^{5}+\frac{1}{8}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{8}a^{16}-\frac{1}{8}a^{13}-\frac{1}{8}a^{12}-\frac{1}{4}a^{10}-\frac{1}{8}a^{9}+\frac{1}{8}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{6}+\frac{1}{8}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{17}-\frac{1}{8}a^{12}-\frac{1}{4}a^{9}-\frac{1}{8}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{3}{8}a^{5}+\frac{1}{8}a^{4}+\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{5371420912}a^{18}-\frac{282229565}{5371420912}a^{16}+\frac{12883785}{671427614}a^{14}-\frac{45904041}{413186224}a^{12}-\frac{1}{4}a^{11}-\frac{5177735}{1342855228}a^{10}-\frac{90887453}{413186224}a^{8}-\frac{1}{4}a^{7}+\frac{356154411}{5371420912}a^{6}-\frac{3427641}{51648278}a^{4}-\frac{1}{4}a^{3}-\frac{147852691}{335713807}a^{2}+\frac{150363771}{671427614}$, $\frac{1}{5371420912}a^{19}-\frac{282229565}{5371420912}a^{17}+\frac{12883785}{671427614}a^{15}-\frac{45904041}{413186224}a^{13}-\frac{5177735}{1342855228}a^{11}-\frac{90887453}{413186224}a^{9}+\frac{356154411}{5371420912}a^{7}-\frac{3427641}{51648278}a^{5}-\frac{147852691}{335713807}a^{3}+\frac{150363771}{671427614}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $10$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{96375637}{5371420912}a^{19}-\frac{436139441}{5371420912}a^{17}-\frac{36128607}{1342855228}a^{15}+\frac{88272527}{413186224}a^{13}-\frac{1420915601}{671427614}a^{11}+\frac{2388498427}{413186224}a^{9}-\frac{40395385653}{5371420912}a^{7}+\frac{665800941}{103296556}a^{5}-\frac{799846319}{671427614}a^{3}-\frac{1195424523}{671427614}a$, $\frac{38680469}{2685710456}a^{18}-\frac{149597355}{2685710456}a^{16}-\frac{36153391}{671427614}a^{14}+\frac{25513269}{206593112}a^{12}-\frac{1103743339}{671427614}a^{10}+\frac{732530269}{206593112}a^{8}-\frac{11273182721}{2685710456}a^{6}+\frac{170975229}{51648278}a^{4}+\frac{6830127}{335713807}a^{2}-\frac{144958108}{335713807}$, $\frac{20459485}{2685710456}a^{18}-\frac{114122551}{2685710456}a^{16}+\frac{13654737}{671427614}a^{14}+\frac{23597285}{206593112}a^{12}-\frac{642622853}{671427614}a^{10}+\frac{703334429}{206593112}a^{8}-\frac{14265565573}{2685710456}a^{6}+\frac{292069779}{51648278}a^{4}-\frac{2487516601}{671427614}a^{2}-\frac{188766650}{335713807}$, $\frac{94383325}{2685710456}a^{19}+\frac{96375637}{5371420912}a^{18}-\frac{246188055}{1342855228}a^{17}-\frac{436139441}{5371420912}a^{16}+\frac{114122551}{2685710456}a^{15}-\frac{36128607}{1342855228}a^{14}+\frac{104702379}{206593112}a^{13}+\frac{88272527}{413186224}a^{12}-\frac{11632763705}{2685710456}a^{11}-\frac{1420915601}{671427614}a^{10}+\frac{2891284999}{206593112}a^{9}+\frac{2388498427}{413186224}a^{8}-\frac{28403463351}{1342855228}a^{7}-\frac{40395385653}{5371420912}a^{6}+\frac{4146658621}{206593112}a^{5}+\frac{665800941}{103296556}a^{4}-\frac{3550161751}{335713807}a^{3}-\frac{799846319}{671427614}a^{2}+\frac{599850101}{671427614}a-\frac{1195424523}{671427614}$, $\frac{37898295}{5371420912}a^{19}+\frac{5221825}{5371420912}a^{18}-\frac{164181579}{5371420912}a^{17}+\frac{231245}{5371420912}a^{16}-\frac{26380845}{2685710456}a^{15}-\frac{16916543}{1342855228}a^{14}+\frac{19681807}{413186224}a^{13}-\frac{8503589}{413186224}a^{12}-\frac{2195116387}{2685710456}a^{11}-\frac{178905823}{1342855228}a^{10}+\frac{915684887}{413186224}a^{9}-\frac{75195493}{413186224}a^{8}-\frac{18062107389}{5371420912}a^{7}+\frac{744898527}{5371420912}a^{6}+\frac{940740983}{206593112}a^{5}-\frac{20147453}{206593112}a^{4}-\frac{4325212127}{1342855228}a^{3}+\frac{1562134787}{1342855228}a^{2}+\frac{847971469}{671427614}a+\frac{69777878}{335713807}$, $\frac{37898295}{5371420912}a^{19}+\frac{72139113}{5371420912}a^{18}-\frac{164181579}{5371420912}a^{17}-\frac{299425955}{5371420912}a^{16}-\frac{26380845}{2685710456}a^{15}-\frac{55390239}{1342855228}a^{14}+\frac{19681807}{413186224}a^{13}+\frac{59530127}{413186224}a^{12}-\frac{2195116387}{2685710456}a^{11}-\frac{2028580855}{1342855228}a^{10}+\frac{915684887}{413186224}a^{9}+\frac{1540256031}{413186224}a^{8}-\frac{18062107389}{5371420912}a^{7}-\frac{23291263969}{5371420912}a^{6}+\frac{940740983}{206593112}a^{5}+\frac{704048369}{206593112}a^{4}-\frac{4325212127}{1342855228}a^{3}-\frac{1534814279}{1342855228}a^{2}+\frac{847971469}{671427614}a-\frac{214735986}{335713807}$, $\frac{53401093}{5371420912}a^{19}-\frac{76270465}{5371420912}a^{18}-\frac{124787659}{5371420912}a^{17}+\frac{197044873}{5371420912}a^{16}-\frac{264661479}{2685710456}a^{15}+\frac{339184405}{2685710456}a^{14}+\frac{11222445}{413186224}a^{13}-\frac{18828277}{413186224}a^{12}-\frac{2612214047}{2685710456}a^{11}+\frac{3788434491}{2685710456}a^{10}+\frac{325857361}{413186224}a^{9}-\frac{644100093}{413186224}a^{8}+\frac{6358820881}{5371420912}a^{7}-\frac{3430761577}{5371420912}a^{6}-\frac{86269343}{51648278}a^{5}+\frac{208657783}{206593112}a^{4}+\frac{1281807675}{335713807}a^{3}-\frac{4895562547}{1342855228}a^{2}-\frac{11992912}{335713807}a-\frac{204051810}{335713807}$, $\frac{96375637}{5371420912}a^{19}-\frac{412459}{122077748}a^{18}-\frac{436139441}{5371420912}a^{17}+\frac{1240631}{61038874}a^{16}-\frac{36128607}{1342855228}a^{15}-\frac{1213311}{122077748}a^{14}+\frac{88272527}{413186224}a^{13}-\frac{792089}{9390596}a^{12}-\frac{1420915601}{671427614}a^{11}+\frac{53704597}{122077748}a^{10}+\frac{2388498427}{413186224}a^{9}-\frac{14551629}{9390596}a^{8}-\frac{40395385653}{5371420912}a^{7}+\frac{66625659}{30519437}a^{6}+\frac{665800941}{103296556}a^{5}-\frac{6175171}{9390596}a^{4}-\frac{799846319}{671427614}a^{3}-\frac{11801224}{30519437}a^{2}-\frac{1195424523}{671427614}a+\frac{16556673}{30519437}$, $\frac{30744921}{2685710456}a^{18}-\frac{67304607}{2685710456}a^{16}-\frac{139766049}{1342855228}a^{14}-\frac{9022923}{206593112}a^{12}-\frac{1568202771}{1342855228}a^{10}+\frac{203575069}{206593112}a^{8}+\frac{258451529}{2685710456}a^{6}+\frac{52362920}{25824139}a^{4}+\frac{618509043}{671427614}a^{2}+\frac{124185309}{335713807}$, $\frac{32080525}{5371420912}a^{19}-\frac{155033513}{5371420912}a^{17}+\frac{2325361}{1342855228}a^{15}+\frac{26732271}{413186224}a^{13}-\frac{246706209}{335713807}a^{11}+\frac{900085363}{413186224}a^{9}-\frac{18907269701}{5371420912}a^{7}+\frac{395213491}{103296556}a^{5}-\frac{1691367907}{671427614}a^{3}+\frac{564557751}{671427614}a$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 320036.323885 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{9}\cdot 320036.323885 \cdot 1}{2\cdot\sqrt{400000000000000000000000000}}\cr\approx \mathstrut & 0.488447721933 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - 5*x^18 + 15*x^14 - 120*x^12 + 371*x^10 - 505*x^8 + 420*x^6 - 140*x^4 - 80*x^2 - 16)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - 5*x^18 + 15*x^14 - 120*x^12 + 371*x^10 - 505*x^8 + 420*x^6 - 140*x^4 - 80*x^2 - 16, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - 5*x^18 + 15*x^14 - 120*x^12 + 371*x^10 - 505*x^8 + 420*x^6 - 140*x^4 - 80*x^2 - 16);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - 5*x^18 + 15*x^14 - 120*x^12 + 371*x^10 - 505*x^8 + 420*x^6 - 140*x^4 - 80*x^2 - 16);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$D_{20}$ (as 20T10):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 40
The 13 conjugacy class representatives for $D_{20}$
Character table for $D_{20}$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.400.1, 5.1.250000.1, 10.2.312500000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 40
Degree 20 sibling: 20.0.320000000000000000000000000.1
Minimal sibling: 20.0.320000000000000000000000000.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $20$ R $20$ ${\href{/padicField/11.2.0.1}{2} }^{9}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ ${\href{/padicField/13.2.0.1}{2} }^{10}$ ${\href{/padicField/17.2.0.1}{2} }^{10}$ ${\href{/padicField/19.2.0.1}{2} }^{9}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ $20$ ${\href{/padicField/29.5.0.1}{5} }^{4}$ ${\href{/padicField/31.2.0.1}{2} }^{9}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.2.0.1}{2} }^{10}$ ${\href{/padicField/41.10.0.1}{10} }^{2}$ $20$ $20$ ${\href{/padicField/53.2.0.1}{2} }^{10}$ ${\href{/padicField/59.2.0.1}{2} }^{9}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.4.3$x^{4} + 2 x^{3} + 4 x^{2} + 12 x + 12$$2$$2$$4$$D_{4}$$[2, 2]^{2}$
2.8.12.13$x^{8} + 8 x^{7} + 28 x^{6} + 58 x^{5} + 87 x^{4} + 98 x^{3} + 58 x^{2} - 2 x + 1$$4$$2$$12$$D_4$$[2, 2]^{2}$
2.8.12.13$x^{8} + 8 x^{7} + 28 x^{6} + 58 x^{5} + 87 x^{4} + 98 x^{3} + 58 x^{2} - 2 x + 1$$4$$2$$12$$D_4$$[2, 2]^{2}$
\(5\) Copy content Toggle raw display Deg $20$$10$$2$$26$