Normalized defining polynomial
\( x^{20} - 5 x^{18} + 15 x^{16} - 18 x^{15} + 70 x^{14} + 360 x^{13} + 205 x^{12} - 225 x^{11} - 312 x^{10} - 630 x^{9} - 260 x^{8} + 450 x^{7} + 550 x^{6} + 342 x^{5} + 90 x^{4} - 180 x^{3} - 170 x^{2} - 45 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3513615863025188446044921875=-\,5^{26}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{1}{9} a^{6} + \frac{2}{9} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{11} + \frac{1}{9} a^{7} + \frac{2}{9} a^{3} + \frac{1}{9} a$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{10} + \frac{1}{9} a^{8} + \frac{1}{9} a^{6} + \frac{2}{9} a^{4} + \frac{1}{3} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{11} + \frac{1}{9} a^{9} + \frac{1}{9} a^{7} + \frac{2}{9} a^{5} + \frac{1}{3} a^{3} + \frac{1}{9} a$, $\frac{1}{27} a^{16} - \frac{1}{27} a^{15} - \frac{1}{27} a^{14} - \frac{1}{27} a^{12} + \frac{4}{27} a^{11} + \frac{2}{27} a^{10} - \frac{1}{27} a^{9} - \frac{1}{9} a^{8} + \frac{2}{27} a^{7} + \frac{4}{27} a^{6} + \frac{1}{27} a^{5} + \frac{4}{27} a^{4} - \frac{1}{9} a^{3} + \frac{1}{27} a^{2} + \frac{2}{27} a + \frac{5}{27}$, $\frac{1}{27} a^{17} + \frac{1}{27} a^{15} - \frac{1}{27} a^{14} - \frac{1}{27} a^{13} + \frac{1}{9} a^{11} + \frac{4}{27} a^{10} - \frac{1}{27} a^{9} - \frac{1}{27} a^{8} + \frac{2}{27} a^{6} + \frac{2}{27} a^{5} + \frac{1}{27} a^{4} - \frac{2}{27} a^{3} - \frac{1}{9} a^{2} + \frac{1}{27} a + \frac{2}{27}$, $\frac{1}{2997} a^{18} - \frac{2}{999} a^{17} + \frac{11}{999} a^{16} + \frac{41}{999} a^{15} - \frac{34}{999} a^{14} - \frac{16}{999} a^{13} - \frac{68}{2997} a^{12} + \frac{113}{999} a^{11} - \frac{7}{111} a^{10} + \frac{53}{333} a^{9} - \frac{1}{27} a^{8} + \frac{145}{999} a^{7} - \frac{428}{2997} a^{6} + \frac{445}{999} a^{5} + \frac{188}{999} a^{4} - \frac{161}{999} a^{3} - \frac{110}{333} a^{2} - \frac{178}{999} a + \frac{277}{2997}$, $\frac{1}{67236170400646479} a^{19} + \frac{56138052937}{1817193794612067} a^{18} + \frac{388978308735994}{22412056800215493} a^{17} + \frac{365159604173804}{22412056800215493} a^{16} + \frac{915606227688292}{22412056800215493} a^{15} - \frac{923985360380014}{22412056800215493} a^{14} - \frac{2313448715998100}{67236170400646479} a^{13} - \frac{649304977128860}{67236170400646479} a^{12} + \frac{162112103457221}{2490228533357277} a^{11} - \frac{907369606338406}{7470685600071831} a^{10} + \frac{313798297020851}{7470685600071831} a^{9} + \frac{2912225828132192}{22412056800215493} a^{8} - \frac{8162028514514588}{67236170400646479} a^{7} + \frac{3239030599956529}{67236170400646479} a^{6} - \frac{1368950132822906}{7470685600071831} a^{5} - \frac{1762033761835267}{22412056800215493} a^{4} + \frac{3696321298827851}{22412056800215493} a^{3} - \frac{81473006163802}{393193978951149} a^{2} - \frac{8991664892197619}{67236170400646479} a + \frac{404392804294915}{67236170400646479}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1089848.04881 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40 |
| The 13 conjugacy class representatives for $D_{20}$ |
| Character table for $D_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.275.1, 5.1.1890625.1, 10.2.17872314453125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | R | $20$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |