Normalized defining polynomial
\( x^{20} - 2 x^{19} + 5 x^{18} + 6 x^{17} - 2 x^{16} + 42 x^{15} + 26 x^{14} + 44 x^{13} + 56 x^{12} + 224 x^{11} - 73 x^{10} + 224 x^{9} + 56 x^{8} + 44 x^{7} + 26 x^{6} + 42 x^{5} - 2 x^{4} + 6 x^{3} + 5 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-35028156925416005746819072=-\,2^{20}\cdot 11^{16}\cdot 727\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 727$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{11} a^{16} - \frac{2}{11} a^{15} + \frac{3}{11} a^{14} - \frac{1}{11} a^{13} + \frac{2}{11} a^{12} + \frac{2}{11} a^{11} - \frac{3}{11} a^{10} - \frac{3}{11} a^{9} + \frac{5}{11} a^{8} - \frac{3}{11} a^{7} - \frac{3}{11} a^{6} + \frac{2}{11} a^{5} + \frac{2}{11} a^{4} - \frac{1}{11} a^{3} + \frac{3}{11} a^{2} - \frac{2}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{17} - \frac{1}{11} a^{15} + \frac{5}{11} a^{14} - \frac{5}{11} a^{12} + \frac{1}{11} a^{11} + \frac{2}{11} a^{10} - \frac{1}{11} a^{9} - \frac{4}{11} a^{8} + \frac{2}{11} a^{7} - \frac{4}{11} a^{6} - \frac{5}{11} a^{5} + \frac{3}{11} a^{4} + \frac{1}{11} a^{3} + \frac{4}{11} a^{2} - \frac{3}{11} a + \frac{2}{11}$, $\frac{1}{261460903} a^{18} + \frac{3087428}{261460903} a^{17} - \frac{4925665}{261460903} a^{16} + \frac{10522066}{261460903} a^{15} - \frac{13504112}{261460903} a^{14} - \frac{75135036}{261460903} a^{13} + \frac{71125719}{261460903} a^{12} - \frac{53233563}{261460903} a^{11} - \frac{76452801}{261460903} a^{10} + \frac{30388790}{261460903} a^{9} + \frac{42393064}{261460903} a^{8} - \frac{29464390}{261460903} a^{7} + \frac{94894892}{261460903} a^{6} + \frac{67480002}{261460903} a^{5} - \frac{61042458}{261460903} a^{4} + \frac{58060412}{261460903} a^{3} + \frac{90151027}{261460903} a^{2} - \frac{91989264}{261460903} a + \frac{47538347}{261460903}$, $\frac{1}{6013600769} a^{19} - \frac{3}{6013600769} a^{18} - \frac{145702462}{6013600769} a^{17} + \frac{25607416}{6013600769} a^{16} + \frac{40060928}{261460903} a^{15} - \frac{2041166790}{6013600769} a^{14} - \frac{53975864}{6013600769} a^{13} + \frac{2547310872}{6013600769} a^{12} - \frac{2109579324}{6013600769} a^{11} - \frac{916157024}{6013600769} a^{10} - \frac{144909909}{546690979} a^{9} - \frac{2140699681}{6013600769} a^{8} - \frac{916157192}{6013600769} a^{7} - \frac{1016197378}{6013600769} a^{6} + \frac{231573714}{546690979} a^{5} + \frac{21422397}{261460903} a^{4} + \frac{1238979040}{6013600769} a^{3} - \frac{171980606}{6013600769} a^{2} - \frac{521083564}{6013600769} a + \frac{2041061447}{6013600769}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48504.8032346 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 81920 |
| The 332 conjugacy class representatives for t20n749 are not computed |
| Character table for t20n749 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.2.219503494144.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 727 | Data not computed | ||||||