Properties

Label 20.2.35028156925...9072.1
Degree $20$
Signature $[2, 9]$
Discriminant $-\,2^{20}\cdot 11^{16}\cdot 727$
Root discriminant $18.93$
Ramified primes $2, 11, 727$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T749

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, 5, 6, -2, 42, 26, 44, 56, 224, -73, 224, 56, 44, 26, 42, -2, 6, 5, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 + 5*x^18 + 6*x^17 - 2*x^16 + 42*x^15 + 26*x^14 + 44*x^13 + 56*x^12 + 224*x^11 - 73*x^10 + 224*x^9 + 56*x^8 + 44*x^7 + 26*x^6 + 42*x^5 - 2*x^4 + 6*x^3 + 5*x^2 - 2*x + 1)
 
gp: K = bnfinit(x^20 - 2*x^19 + 5*x^18 + 6*x^17 - 2*x^16 + 42*x^15 + 26*x^14 + 44*x^13 + 56*x^12 + 224*x^11 - 73*x^10 + 224*x^9 + 56*x^8 + 44*x^7 + 26*x^6 + 42*x^5 - 2*x^4 + 6*x^3 + 5*x^2 - 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} + 5 x^{18} + 6 x^{17} - 2 x^{16} + 42 x^{15} + 26 x^{14} + 44 x^{13} + 56 x^{12} + 224 x^{11} - 73 x^{10} + 224 x^{9} + 56 x^{8} + 44 x^{7} + 26 x^{6} + 42 x^{5} - 2 x^{4} + 6 x^{3} + 5 x^{2} - 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-35028156925416005746819072=-\,2^{20}\cdot 11^{16}\cdot 727\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.93$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 727$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{11} a^{16} - \frac{2}{11} a^{15} + \frac{3}{11} a^{14} - \frac{1}{11} a^{13} + \frac{2}{11} a^{12} + \frac{2}{11} a^{11} - \frac{3}{11} a^{10} - \frac{3}{11} a^{9} + \frac{5}{11} a^{8} - \frac{3}{11} a^{7} - \frac{3}{11} a^{6} + \frac{2}{11} a^{5} + \frac{2}{11} a^{4} - \frac{1}{11} a^{3} + \frac{3}{11} a^{2} - \frac{2}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{17} - \frac{1}{11} a^{15} + \frac{5}{11} a^{14} - \frac{5}{11} a^{12} + \frac{1}{11} a^{11} + \frac{2}{11} a^{10} - \frac{1}{11} a^{9} - \frac{4}{11} a^{8} + \frac{2}{11} a^{7} - \frac{4}{11} a^{6} - \frac{5}{11} a^{5} + \frac{3}{11} a^{4} + \frac{1}{11} a^{3} + \frac{4}{11} a^{2} - \frac{3}{11} a + \frac{2}{11}$, $\frac{1}{261460903} a^{18} + \frac{3087428}{261460903} a^{17} - \frac{4925665}{261460903} a^{16} + \frac{10522066}{261460903} a^{15} - \frac{13504112}{261460903} a^{14} - \frac{75135036}{261460903} a^{13} + \frac{71125719}{261460903} a^{12} - \frac{53233563}{261460903} a^{11} - \frac{76452801}{261460903} a^{10} + \frac{30388790}{261460903} a^{9} + \frac{42393064}{261460903} a^{8} - \frac{29464390}{261460903} a^{7} + \frac{94894892}{261460903} a^{6} + \frac{67480002}{261460903} a^{5} - \frac{61042458}{261460903} a^{4} + \frac{58060412}{261460903} a^{3} + \frac{90151027}{261460903} a^{2} - \frac{91989264}{261460903} a + \frac{47538347}{261460903}$, $\frac{1}{6013600769} a^{19} - \frac{3}{6013600769} a^{18} - \frac{145702462}{6013600769} a^{17} + \frac{25607416}{6013600769} a^{16} + \frac{40060928}{261460903} a^{15} - \frac{2041166790}{6013600769} a^{14} - \frac{53975864}{6013600769} a^{13} + \frac{2547310872}{6013600769} a^{12} - \frac{2109579324}{6013600769} a^{11} - \frac{916157024}{6013600769} a^{10} - \frac{144909909}{546690979} a^{9} - \frac{2140699681}{6013600769} a^{8} - \frac{916157192}{6013600769} a^{7} - \frac{1016197378}{6013600769} a^{6} + \frac{231573714}{546690979} a^{5} + \frac{21422397}{261460903} a^{4} + \frac{1238979040}{6013600769} a^{3} - \frac{171980606}{6013600769} a^{2} - \frac{521083564}{6013600769} a + \frac{2041061447}{6013600769}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 48504.8032346 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T749:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 81920
The 332 conjugacy class representatives for t20n749 are not computed
Character table for t20n749 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.2.219503494144.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
727Data not computed