Normalized defining polynomial
\( x^{20} - 2 x^{19} + 2 x^{18} - 6 x^{17} - 6 x^{15} + 26 x^{14} + 12 x^{13} + 56 x^{12} - 16 x^{11} - 76 x^{10} - 84 x^{9} + 22 x^{8} + 136 x^{7} - 48 x^{6} + 128 x^{5} + 28 x^{4} + 40 x^{3} + 16 x^{2} - 4 x + 2 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-34700415561107942970228736=-\,2^{34}\cdot 13^{8}\cdot 19^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} - \frac{5}{13} a^{16} + \frac{1}{13} a^{15} + \frac{5}{13} a^{14} + \frac{4}{13} a^{12} - \frac{4}{13} a^{11} - \frac{1}{13} a^{10} + \frac{2}{13} a^{9} - \frac{2}{13} a^{8} + \frac{3}{13} a^{7} + \frac{2}{13} a^{6} - \frac{4}{13} a^{5} - \frac{4}{13} a^{4} + \frac{1}{13} a^{2} + \frac{3}{13} a + \frac{2}{13}$, $\frac{1}{13} a^{18} + \frac{2}{13} a^{16} - \frac{3}{13} a^{15} - \frac{1}{13} a^{14} + \frac{4}{13} a^{13} + \frac{3}{13} a^{12} + \frac{5}{13} a^{11} - \frac{3}{13} a^{10} - \frac{5}{13} a^{9} + \frac{6}{13} a^{8} + \frac{4}{13} a^{7} + \frac{6}{13} a^{6} + \frac{2}{13} a^{5} + \frac{6}{13} a^{4} + \frac{1}{13} a^{3} - \frac{5}{13} a^{2} + \frac{4}{13} a - \frac{3}{13}$, $\frac{1}{3792982744395126839167} a^{19} - \frac{80222121368461071177}{3792982744395126839167} a^{18} - \frac{139077322597953448116}{3792982744395126839167} a^{17} + \frac{625156248965885347699}{3792982744395126839167} a^{16} - \frac{612690911860073940979}{3792982744395126839167} a^{15} - \frac{749139618367118514129}{3792982744395126839167} a^{14} + \frac{548215691216218003751}{3792982744395126839167} a^{13} - \frac{404844249485433514391}{3792982744395126839167} a^{12} - \frac{760983307130691865318}{3792982744395126839167} a^{11} + \frac{1325957891778137745884}{3792982744395126839167} a^{10} + \frac{555965185415425109634}{3792982744395126839167} a^{9} - \frac{770423024740012094461}{3792982744395126839167} a^{8} + \frac{1846509197339373969754}{3792982744395126839167} a^{7} + \frac{926808514823256332110}{3792982744395126839167} a^{6} - \frac{118338025758773066711}{3792982744395126839167} a^{5} + \frac{320999805848554606255}{3792982744395126839167} a^{4} - \frac{6537408345367205970}{3792982744395126839167} a^{3} + \frac{827434796768552172970}{3792982744395126839167} a^{2} + \frac{653848495539807336306}{3792982744395126839167} a + \frac{93511878684826952587}{291767903415009756859}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 79272.7321359 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n989 are not computed |
| Character table for t20n989 is not computed |
Intermediate fields
| 5.3.51376.1, 10.4.168927576064.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.6.4.1 | $x^{6} + 39 x^{3} + 676$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.1 | $x^{6} + 39 x^{3} + 676$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.8.0.1 | $x^{8} + 4 x^{2} - x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.12.0.1 | $x^{12} - x + 15$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |