Normalized defining polynomial
\( x^{20} - 3 x^{19} + 4 x^{18} + 11 x^{17} - 31 x^{16} + 51 x^{15} + 44 x^{14} - 70 x^{13} + 323 x^{12} + 55 x^{11} + 32 x^{10} + 444 x^{9} - 329 x^{8} + 5 x^{7} - 38 x^{6} - 316 x^{5} + 104 x^{4} - 257 x^{3} + 22 x^{2} - 52 x - 23 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3195114169182285566595267779=-\,11^{17}\cdot 43^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{46} a^{18} + \frac{3}{23} a^{17} + \frac{11}{46} a^{16} - \frac{11}{46} a^{15} - \frac{3}{46} a^{14} - \frac{11}{46} a^{13} + \frac{17}{46} a^{12} + \frac{1}{23} a^{11} + \frac{1}{23} a^{10} - \frac{21}{46} a^{9} + \frac{1}{23} a^{8} + \frac{7}{23} a^{6} - \frac{7}{46} a^{5} + \frac{13}{46} a^{3} + \frac{7}{23} a^{2} - \frac{3}{23} a$, $\frac{1}{52718313482781274346191226} a^{19} + \frac{42374846810808578972537}{26359156741390637173095613} a^{18} + \frac{3550885895242732066094208}{26359156741390637173095613} a^{17} - \frac{4735533559895478437373295}{26359156741390637173095613} a^{16} + \frac{3695149418606428295270094}{26359156741390637173095613} a^{15} - \frac{16654931004749072384767755}{52718313482781274346191226} a^{14} + \frac{10196149536399473864073943}{52718313482781274346191226} a^{13} + \frac{6358583165872633807907283}{26359156741390637173095613} a^{12} - \frac{1408887544707315663575389}{26359156741390637173095613} a^{11} - \frac{9587940725452627886715834}{26359156741390637173095613} a^{10} - \frac{10193517382482941536427551}{26359156741390637173095613} a^{9} + \frac{24903404875051014636790993}{52718313482781274346191226} a^{8} - \frac{25947942215321258173642579}{52718313482781274346191226} a^{7} - \frac{18597528995372703930044563}{52718313482781274346191226} a^{6} - \frac{6632923299941049634534657}{26359156741390637173095613} a^{5} - \frac{11047091825939340975980200}{26359156741390637173095613} a^{4} + \frac{564517023323458056140651}{52718313482781274346191226} a^{3} - \frac{3438247699207717174499185}{52718313482781274346191226} a^{2} - \frac{424178971322279553404329}{52718313482781274346191226} a - \frac{213588256990531468545140}{1146050293103940746656331}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 556828.06097 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 80 conjugacy class representatives for t20n326 are not computed |
| Character table for t20n326 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.2.396349570969.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 43 | Data not computed | ||||||