Normalized defining polynomial
\( x^{20} + 21 x^{18} + 105 x^{16} - 696 x^{14} - 10001 x^{12} - 45946 x^{10} - 103315 x^{8} - 117044 x^{6} - 63104 x^{4} - 14065 x^{2} - 725 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-30988918815000698609123925781250000=-\,2^{4}\cdot 5^{14}\cdot 19^{4}\cdot 29^{7}\cdot 109^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 29, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{8} - \frac{2}{5} a^{6} - \frac{2}{5} a^{4} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{9} - \frac{2}{5} a^{7} - \frac{2}{5} a^{5} + \frac{1}{5} a^{3}$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{10} - \frac{2}{5} a^{8} - \frac{1}{2} a^{7} - \frac{2}{5} a^{6} - \frac{1}{2} a^{5} - \frac{1}{10} a^{4} - \frac{1}{2} a^{3} - \frac{2}{5} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{11} - \frac{2}{5} a^{9} - \frac{1}{2} a^{8} - \frac{2}{5} a^{7} - \frac{1}{2} a^{6} - \frac{1}{10} a^{5} - \frac{1}{2} a^{4} - \frac{2}{5} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{10} - \frac{1}{2} a^{9} + \frac{2}{5} a^{8} - \frac{3}{10} a^{6} - \frac{3}{10} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{15} - \frac{1}{10} a^{11} - \frac{1}{10} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{3}{10} a^{7} + \frac{1}{5} a^{6} - \frac{3}{10} a^{5} - \frac{3}{10} a^{4} - \frac{1}{2} a^{3} + \frac{2}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{16} - \frac{1}{10} a^{11} - \frac{1}{10} a^{10} + \frac{1}{5} a^{9} + \frac{1}{10} a^{8} - \frac{3}{10} a^{7} + \frac{1}{10} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{10} a^{3} - \frac{3}{10} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{17} - \frac{1}{10} a^{11} - \frac{1}{10} a^{10} + \frac{1}{10} a^{9} - \frac{3}{10} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{3}{10} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2519901428650} a^{18} - \frac{508702312}{1259950714325} a^{16} - \frac{1341229646}{50398028573} a^{14} - \frac{4427912818}{1259950714325} a^{12} - \frac{1}{10} a^{11} - \frac{35390160823}{1259950714325} a^{10} - \frac{3}{10} a^{9} + \frac{480987087782}{1259950714325} a^{8} - \frac{3}{10} a^{7} - \frac{234314318951}{503980285730} a^{6} - \frac{3}{10} a^{5} - \frac{844620150999}{2519901428650} a^{4} - \frac{1}{10} a^{3} + \frac{82353721841}{2519901428650} a^{2} - \frac{1}{2} a - \frac{246515742439}{503980285730}$, $\frac{1}{12599507143250} a^{19} + \frac{250972738241}{12599507143250} a^{17} - \frac{1341229646}{251990142865} a^{15} + \frac{243134317229}{12599507143250} a^{13} - \frac{35390160823}{6299753571625} a^{11} - \frac{1}{10} a^{10} - \frac{5841759681791}{12599507143250} a^{9} - \frac{3}{10} a^{8} - \frac{545540402346}{1259950714325} a^{7} + \frac{1}{5} a^{6} - \frac{800295289797}{6299753571625} a^{5} - \frac{3}{10} a^{4} - \frac{1848749210567}{6299753571625} a^{3} - \frac{1}{10} a^{2} + \frac{257464543291}{2519901428650} a$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1042391985.69 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 819200 |
| The 275 conjugacy class representatives for t20n955 are not computed |
| Character table for t20n955 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.8172298511640625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | R | $20$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.10.0.1 | $x^{10} + x^{2} - 2 x + 14$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.7.4 | $x^{8} + 232$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $109$ | 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |