Normalized defining polynomial
\( x^{20} + 33 x^{18} + 325 x^{16} + 494 x^{14} - 7457 x^{12} - 46212 x^{10} - 307944 x^{8} - 1584144 x^{6} - 3218373 x^{4} - 4903011 x^{2} - 2419551 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3006517575591722236631040000000000=-\,2^{20}\cdot 3^{6}\cdot 5^{10}\cdot 3319^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 3319$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{8} + \frac{2}{9} a^{6} + \frac{1}{9} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{9} + \frac{2}{9} a^{7} + \frac{1}{9} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{27} a^{14} + \frac{1}{27} a^{10} + \frac{2}{27} a^{8} + \frac{10}{27} a^{6} + \frac{2}{9} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{27} a^{15} + \frac{1}{27} a^{11} + \frac{2}{27} a^{9} + \frac{10}{27} a^{7} + \frac{2}{9} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{567} a^{16} - \frac{2}{189} a^{14} + \frac{19}{567} a^{12} - \frac{31}{567} a^{10} - \frac{65}{567} a^{8} + \frac{10}{63} a^{6} - \frac{4}{63} a^{4} - \frac{10}{21} a^{2} - \frac{2}{7}$, $\frac{1}{567} a^{17} - \frac{2}{189} a^{15} + \frac{19}{567} a^{13} - \frac{31}{567} a^{11} - \frac{65}{567} a^{9} + \frac{10}{63} a^{7} - \frac{4}{63} a^{5} - \frac{10}{21} a^{3} - \frac{2}{7} a$, $\frac{1}{2345528939087211590364907941} a^{18} - \frac{648691074818272672575689}{781842979695737196788302647} a^{16} + \frac{3043767876717303956278021}{335075562726744512909272563} a^{14} - \frac{243978545678060598648802}{335075562726744512909272563} a^{12} + \frac{35443135487517929490669874}{2345528939087211590364907941} a^{10} + \frac{93496545820125614016677569}{260614326565245732262767549} a^{8} + \frac{56385001307678729372957636}{260614326565245732262767549} a^{6} - \frac{9623498742704715985861883}{28957147396138414695863061} a^{4} + \frac{9597926263583906259212960}{28957147396138414695863061} a^{2} - \frac{735830190936652599944302}{9652382465379471565287687}$, $\frac{1}{2345528939087211590364907941} a^{19} - \frac{648691074818272672575689}{781842979695737196788302647} a^{17} + \frac{3043767876717303956278021}{335075562726744512909272563} a^{15} - \frac{243978545678060598648802}{335075562726744512909272563} a^{13} + \frac{35443135487517929490669874}{2345528939087211590364907941} a^{11} + \frac{93496545820125614016677569}{260614326565245732262767549} a^{9} + \frac{56385001307678729372957636}{260614326565245732262767549} a^{7} - \frac{9623498742704715985861883}{28957147396138414695863061} a^{5} + \frac{9597926263583906259212960}{28957147396138414695863061} a^{3} - \frac{735830190936652599944302}{9652382465379471565287687} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 206196124.285 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n756 are not computed |
| Character table for t20n756 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.34424253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 3319 | Data not computed | ||||||