Normalized defining polynomial
\( x^{20} - x^{19} + 18 x^{18} + 61 x^{17} - 538 x^{16} + 563 x^{15} - 42096 x^{14} + 86168 x^{13} - 1612926 x^{12} + 3113891 x^{11} - 27783817 x^{10} + 41808036 x^{9} - 262085702 x^{8} + 324820543 x^{7} - 1467374347 x^{6} + 1619970297 x^{5} - 5144459696 x^{4} + 4044906852 x^{3} - 10049936456 x^{2} + 5066796784 x - 9095434144 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-26200187925259114875506183929630664183=-\,61^{6}\cdot 167^{5}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 167, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{17} - \frac{1}{4} a^{16} + \frac{1}{8} a^{15} - \frac{1}{4} a^{14} - \frac{1}{8} a^{13} + \frac{1}{4} a^{10} + \frac{3}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{3}{8} a^{5} - \frac{3}{8} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{45870724465525364668015888595391022604605154822312091558652911106527058926247944591423489331280816} a^{19} - \frac{2468119482843409941039448543867426057685712729409433547611721448198948053868327460961615682351369}{45870724465525364668015888595391022604605154822312091558652911106527058926247944591423489331280816} a^{18} + \frac{1517912422575625939749265267133740362011256709332533590641338689328790235702773852942753189772035}{22935362232762682334007944297695511302302577411156045779326455553263529463123972295711744665640408} a^{17} + \frac{1748589166277453784996813558027759961860121001046382436265261483808984823814967720696157912650617}{45870724465525364668015888595391022604605154822312091558652911106527058926247944591423489331280816} a^{16} + \frac{5590956205231446271114005269180045053424194463375774520727669457481740810900596404946515427693575}{22935362232762682334007944297695511302302577411156045779326455553263529463123972295711744665640408} a^{15} - \frac{59568015544541292360034558699353942021895314016664134230255194392491845012475069189135287798281}{2698277909736786156942111093846530741447362048371299503450171241560415230955761446554322901840048} a^{14} - \frac{292334110245268189293765982288945995159457310342385167894456356294035496881588947069848872785977}{5733840558190670583501986074423877825575644352789011444831613888315882365780993073927936166410102} a^{13} + \frac{1607706857237203215749459899648586984417657732743937359400285217396603687554053590523343948838525}{11467681116381341167003972148847755651151288705578022889663227776631764731561986147855872332820204} a^{12} - \frac{4847429641913094690652352404052226415031905049243380281156012329771113387486612426958521961067331}{22935362232762682334007944297695511302302577411156045779326455553263529463123972295711744665640408} a^{11} + \frac{20571889802482645993411330617339993808626765698884163055651540728781788684545106817872025842619595}{45870724465525364668015888595391022604605154822312091558652911106527058926247944591423489331280816} a^{10} + \frac{13083221972155606308985730519277204478084433201722869526699318296997199993525888419675072346901887}{45870724465525364668015888595391022604605154822312091558652911106527058926247944591423489331280816} a^{9} + \frac{1206634513470945051808445790866984002466543029508876175660746539063121640052463354104625437318640}{2866920279095335291750993037211938912787822176394505722415806944157941182890496536963968083205051} a^{8} + \frac{8311480127724957763409152813746837163348111100689062064666027789692165848011877019137917637005663}{22935362232762682334007944297695511302302577411156045779326455553263529463123972295711744665640408} a^{7} + \frac{21271079661737924623446398529681488098021594064597200696900020472752396136678537164066824393078031}{45870724465525364668015888595391022604605154822312091558652911106527058926247944591423489331280816} a^{6} - \frac{5316521606828157709675216119978594546937639805219054059570110374824592899047525732900952808290459}{45870724465525364668015888595391022604605154822312091558652911106527058926247944591423489331280816} a^{5} - \frac{6483929330210122844332977669259126275769593124645027067937684544790300176279360804743797461707923}{45870724465525364668015888595391022604605154822312091558652911106527058926247944591423489331280816} a^{4} + \frac{5546454572530480816777346367596811152444328750236096135914703469465703350841540029201048598737939}{11467681116381341167003972148847755651151288705578022889663227776631764731561986147855872332820204} a^{3} - \frac{1258460693100950924635092810974810679463034678982493779010523606389241608205153182938315146548875}{2866920279095335291750993037211938912787822176394505722415806944157941182890496536963968083205051} a^{2} + \frac{73394611146134508940248350438920017895898705464857451890552786587704792739882517961671363046891}{2866920279095335291750993037211938912787822176394505722415806944157941182890496536963968083205051} a + \frac{1330975900880248206201780781586345305052903169543966846455425685828118384990017277989257904006310}{2866920279095335291750993037211938912787822176394505722415806944157941182890496536963968083205051}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13263049897.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 280 conjugacy class representatives for t20n990 are not computed |
| Character table for t20n990 is not computed |
Intermediate fields
| 5.5.24217.1, 10.8.97939335863.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| $167$ | 167.4.0.1 | $x^{4} - x + 60$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 167.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 167.6.3.2 | $x^{6} - 27889 x^{2} + 51232093$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 397 | Data not computed | ||||||