Properties

Label 20.2.23802580404...1483.1
Degree $20$
Signature $[2, 9]$
Discriminant $-\,11^{16}\cdot 23\cdot 397^{2}\cdot 1429$
Root discriminant $20.84$
Ramified primes $11, 23, 397, 1429$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T846

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 7, -19, 8, 118, -508, 1299, -2520, 4005, -5383, 6197, -6146, 5258, -3872, 2438, -1296, 570, -201, 54, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 54*x^18 - 201*x^17 + 570*x^16 - 1296*x^15 + 2438*x^14 - 3872*x^13 + 5258*x^12 - 6146*x^11 + 6197*x^10 - 5383*x^9 + 4005*x^8 - 2520*x^7 + 1299*x^6 - 508*x^5 + 118*x^4 + 8*x^3 - 19*x^2 + 7*x - 1)
 
gp: K = bnfinit(x^20 - 10*x^19 + 54*x^18 - 201*x^17 + 570*x^16 - 1296*x^15 + 2438*x^14 - 3872*x^13 + 5258*x^12 - 6146*x^11 + 6197*x^10 - 5383*x^9 + 4005*x^8 - 2520*x^7 + 1299*x^6 - 508*x^5 + 118*x^4 + 8*x^3 - 19*x^2 + 7*x - 1, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 54 x^{18} - 201 x^{17} + 570 x^{16} - 1296 x^{15} + 2438 x^{14} - 3872 x^{13} + 5258 x^{12} - 6146 x^{11} + 6197 x^{10} - 5383 x^{9} + 4005 x^{8} - 2520 x^{7} + 1299 x^{6} - 508 x^{5} + 118 x^{4} + 8 x^{3} - 19 x^{2} + 7 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[2, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-238025804044684565812451483=-\,11^{16}\cdot 23\cdot 397^{2}\cdot 1429\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $20.84$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 23, 397, 1429$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{67} a^{18} - \frac{9}{67} a^{17} + \frac{26}{67} a^{16} - \frac{4}{67} a^{15} + \frac{5}{67} a^{14} - \frac{9}{67} a^{13} - \frac{11}{67} a^{12} - \frac{27}{67} a^{11} + \frac{13}{67} a^{10} + \frac{8}{67} a^{9} - \frac{5}{67} a^{8} + \frac{21}{67} a^{7} - \frac{33}{67} a^{6} - \frac{4}{67} a^{5} - \frac{21}{67} a^{4} + \frac{16}{67} a^{3} - \frac{3}{67} a^{2} - \frac{31}{67} a + \frac{7}{67}$, $\frac{1}{67} a^{19} + \frac{12}{67} a^{17} + \frac{29}{67} a^{16} - \frac{31}{67} a^{15} - \frac{31}{67} a^{14} - \frac{25}{67} a^{13} + \frac{8}{67} a^{12} - \frac{29}{67} a^{11} - \frac{9}{67} a^{10} - \frac{24}{67} a^{8} + \frac{22}{67} a^{7} - \frac{33}{67} a^{6} + \frac{10}{67} a^{5} + \frac{28}{67} a^{4} + \frac{7}{67} a^{3} + \frac{9}{67} a^{2} - \frac{4}{67} a - \frac{4}{67}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 126538.243223 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T846:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 163840
The 649 conjugacy class representatives for t20n846 are not computed
Character table for t20n846 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.6.85100475757.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ $20$ $20$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ $20$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
397Data not computed
1429Data not computed