Normalized defining polynomial
\( x^{20} - 4 x^{19} + 20 x^{18} - 80 x^{17} + 308 x^{16} - 1028 x^{15} + 2823 x^{14} - 6346 x^{13} + 11274 x^{12} - 14162 x^{11} + 6132 x^{10} + 27074 x^{9} - 96544 x^{8} + 197534 x^{7} - 299095 x^{6} + 354922 x^{5} - 333566 x^{4} + 243846 x^{3} - 133473 x^{2} + 49824 x - 10161 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-232246326086930752913583984375=-\,3^{10}\cdot 5^{10}\cdot 3319^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 3319$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{18} - \frac{1}{6} a^{17} - \frac{1}{6} a^{16} + \frac{1}{6} a^{15} - \frac{1}{6} a^{14} + \frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{3} a^{9} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6683009793898668433216882918597378326} a^{19} - \frac{171852049624179723268241508323307727}{2227669931299556144405627639532459442} a^{18} + \frac{466746432789045402702679012139439191}{3341504896949334216608441459298689163} a^{17} - \frac{19279107556955475353446383532095375}{2227669931299556144405627639532459442} a^{16} + \frac{76909404187345733907716157971650401}{2227669931299556144405627639532459442} a^{15} - \frac{472663471207955521269695602481851841}{2227669931299556144405627639532459442} a^{14} - \frac{1385060304845471725294054474212297563}{6683009793898668433216882918597378326} a^{13} + \frac{365832965310497148991574577278297849}{6683009793898668433216882918597378326} a^{12} + \frac{564484521683527452752262021803638619}{6683009793898668433216882918597378326} a^{11} + \frac{561505789932581073609110583318167828}{3341504896949334216608441459298689163} a^{10} + \frac{686555022318429451752553953603522491}{3341504896949334216608441459298689163} a^{9} - \frac{339077311250825922832606582099700810}{3341504896949334216608441459298689163} a^{8} + \frac{755019168554568537262395763466113975}{6683009793898668433216882918597378326} a^{7} - \frac{3286730320234873879193172126556466201}{6683009793898668433216882918597378326} a^{6} - \frac{1523833761860603262791744882247524747}{6683009793898668433216882918597378326} a^{5} - \frac{305965931345841096879203285165912391}{2227669931299556144405627639532459442} a^{4} + \frac{2363244595099188472951043279742648851}{6683009793898668433216882918597378326} a^{3} + \frac{1079476511748163924618185015003734557}{6683009793898668433216882918597378326} a^{2} - \frac{458449664345569735149475565138039119}{2227669931299556144405627639532459442} a - \frac{85624820489735844972378053005150586}{1113834965649778072202813819766229721}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2406364.96464 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_5\wr C_2$ (as 20T92):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_2\times D_5\wr C_2$ |
| Character table for $C_2\times D_5\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.746775.1, 10.6.34424253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||
| 3319 | Data not computed | ||||||