Normalized defining polynomial
\( x^{20} - 7 x^{18} - 16 x^{17} + 18 x^{16} + 100 x^{15} + 102 x^{14} - 222 x^{13} - 93 x^{12} + 1168 x^{11} + 15 x^{10} - 814 x^{9} + 791 x^{8} - 636 x^{7} + 2038 x^{6} - 384 x^{5} - 2151 x^{4} + 2040 x^{3} - 3366 x^{2} + 252 x - 423 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2115524933097244001040375742464=-\,2^{20}\cdot 3^{18}\cdot 13^{5}\cdot 107^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{9} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{10} + \frac{1}{3} a^{4}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{15} + \frac{1}{9} a^{14} - \frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{1}{3} a^{10} - \frac{2}{9} a^{9} - \frac{4}{9} a^{8} + \frac{1}{3} a^{7} - \frac{2}{9} a^{6} - \frac{1}{3} a^{5}$, $\frac{1}{2691} a^{18} + \frac{128}{2691} a^{17} + \frac{35}{2691} a^{16} - \frac{292}{2691} a^{15} - \frac{265}{2691} a^{14} + \frac{389}{2691} a^{13} + \frac{58}{897} a^{12} - \frac{374}{2691} a^{11} - \frac{80}{207} a^{10} - \frac{44}{2691} a^{9} + \frac{883}{2691} a^{8} + \frac{1234}{2691} a^{7} - \frac{571}{2691} a^{6} + \frac{9}{23} a^{5} - \frac{103}{299} a^{4} + \frac{61}{897} a^{3} + \frac{27}{299} a^{2} + \frac{96}{299} a + \frac{44}{299}$, $\frac{1}{59210767130255734340761365000933} a^{19} - \frac{9696009861696206863852026910}{59210767130255734340761365000933} a^{18} + \frac{1858305241601566957266330915640}{59210767130255734340761365000933} a^{17} + \frac{6791553137612591142428102925824}{59210767130255734340761365000933} a^{16} + \frac{2260043719164872560577987265026}{19736922376751911446920455000311} a^{15} - \frac{73979718373195793461582254631}{2574381179576336275685276739171} a^{14} - \frac{1689043882664952585162074050150}{19736922376751911446920455000311} a^{13} + \frac{3156920049223676314779249349310}{59210767130255734340761365000933} a^{12} - \frac{4972571665805210420904516624982}{59210767130255734340761365000933} a^{11} + \frac{1788734017780054679595409557235}{59210767130255734340761365000933} a^{10} + \frac{3196943054070279985440838441111}{19736922376751911446920455000311} a^{9} + \frac{8720213329609209413401591278722}{59210767130255734340761365000933} a^{8} + \frac{12003539791565074312876186373084}{59210767130255734340761365000933} a^{7} - \frac{1916536986706984578817087328845}{59210767130255734340761365000933} a^{6} - \frac{2902796841087838332070822554151}{6578974125583970482306818333437} a^{5} - \frac{1435922441676965450676063625867}{6578974125583970482306818333437} a^{4} + \frac{63595209503238430323355905652}{506074932737228498638986025649} a^{3} + \frac{2396488441570079365739875210653}{6578974125583970482306818333437} a^{2} + \frac{2241720853471721155977605415538}{6578974125583970482306818333437} a + \frac{1293684687701732331358198858929}{6578974125583970482306818333437}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62306146.5873 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 324 conjugacy class representatives for t20n1023 are not computed |
| Character table for t20n1023 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 10.6.38998285028352.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $3$ | 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.6.6.7 | $x^{6} + 3 x + 6$ | $6$ | $1$ | $6$ | $C_3^2:D_4$ | $[5/4, 5/4]_{4}^{2}$ | |
| 3.6.6.7 | $x^{6} + 3 x + 6$ | $6$ | $1$ | $6$ | $C_3^2:D_4$ | $[5/4, 5/4]_{4}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 107 | Data not computed | ||||||