Properties

Label 20.2.211...464.1
Degree $20$
Signature $[2, 9]$
Discriminant $-2.116\times 10^{30}$
Root discriminant \(32.83\)
Ramified primes $2,3,13,107$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^{10}.\SOPlus(4,4)$ (as 20T1023)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^20 - 7*x^18 - 16*x^17 + 18*x^16 + 100*x^15 + 102*x^14 - 222*x^13 - 93*x^12 + 1168*x^11 + 15*x^10 - 814*x^9 + 791*x^8 - 636*x^7 + 2038*x^6 - 384*x^5 - 2151*x^4 + 2040*x^3 - 3366*x^2 + 252*x - 423)
 
Copy content gp:K = bnfinit(y^20 - 7*y^18 - 16*y^17 + 18*y^16 + 100*y^15 + 102*y^14 - 222*y^13 - 93*y^12 + 1168*y^11 + 15*y^10 - 814*y^9 + 791*y^8 - 636*y^7 + 2038*y^6 - 384*y^5 - 2151*y^4 + 2040*y^3 - 3366*y^2 + 252*y - 423, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 7*x^18 - 16*x^17 + 18*x^16 + 100*x^15 + 102*x^14 - 222*x^13 - 93*x^12 + 1168*x^11 + 15*x^10 - 814*x^9 + 791*x^8 - 636*x^7 + 2038*x^6 - 384*x^5 - 2151*x^4 + 2040*x^3 - 3366*x^2 + 252*x - 423);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 - 7*x^18 - 16*x^17 + 18*x^16 + 100*x^15 + 102*x^14 - 222*x^13 - 93*x^12 + 1168*x^11 + 15*x^10 - 814*x^9 + 791*x^8 - 636*x^7 + 2038*x^6 - 384*x^5 - 2151*x^4 + 2040*x^3 - 3366*x^2 + 252*x - 423)
 

\( x^{20} - 7 x^{18} - 16 x^{17} + 18 x^{16} + 100 x^{15} + 102 x^{14} - 222 x^{13} - 93 x^{12} + \cdots - 423 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $20$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[2, 9]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(-2115524933097244001040375742464\) \(\medspace = -\,2^{20}\cdot 3^{18}\cdot 13^{5}\cdot 107^{5}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(32.83\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{43/36}13^{5/6}107^{5/6}\approx 3092.8873527512997$
Ramified primes:   \(2\), \(3\), \(13\), \(107\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q(\sqrt{-1391}) \)
$\Aut(K/\Q)$:   $C_2$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3}a^{11}-\frac{1}{3}a^{9}-\frac{1}{3}a^{5}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{12}-\frac{1}{3}a^{10}-\frac{1}{3}a^{6}+\frac{1}{3}a^{4}$, $\frac{1}{3}a^{13}-\frac{1}{3}a^{9}-\frac{1}{3}a^{7}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{14}-\frac{1}{3}a^{10}-\frac{1}{3}a^{8}+\frac{1}{3}a^{4}$, $\frac{1}{3}a^{15}+\frac{1}{3}a^{9}+\frac{1}{3}a^{3}$, $\frac{1}{3}a^{16}+\frac{1}{3}a^{10}+\frac{1}{3}a^{4}$, $\frac{1}{9}a^{17}-\frac{1}{9}a^{15}+\frac{1}{9}a^{14}-\frac{1}{9}a^{12}-\frac{1}{9}a^{11}+\frac{1}{3}a^{10}-\frac{2}{9}a^{9}-\frac{4}{9}a^{8}+\frac{1}{3}a^{7}-\frac{2}{9}a^{6}-\frac{1}{3}a^{5}$, $\frac{1}{2691}a^{18}+\frac{128}{2691}a^{17}+\frac{35}{2691}a^{16}-\frac{292}{2691}a^{15}-\frac{265}{2691}a^{14}+\frac{389}{2691}a^{13}+\frac{58}{897}a^{12}-\frac{374}{2691}a^{11}-\frac{80}{207}a^{10}-\frac{44}{2691}a^{9}+\frac{883}{2691}a^{8}+\frac{1234}{2691}a^{7}-\frac{571}{2691}a^{6}+\frac{9}{23}a^{5}-\frac{103}{299}a^{4}+\frac{61}{897}a^{3}+\frac{27}{299}a^{2}+\frac{96}{299}a+\frac{44}{299}$, $\frac{1}{59\cdots 33}a^{19}-\frac{96\cdots 10}{59\cdots 33}a^{18}+\frac{18\cdots 40}{59\cdots 33}a^{17}+\frac{67\cdots 24}{59\cdots 33}a^{16}+\frac{22\cdots 26}{19\cdots 11}a^{15}-\frac{73\cdots 31}{25\cdots 71}a^{14}-\frac{16\cdots 50}{19\cdots 11}a^{13}+\frac{31\cdots 10}{59\cdots 33}a^{12}-\frac{49\cdots 82}{59\cdots 33}a^{11}+\frac{17\cdots 35}{59\cdots 33}a^{10}+\frac{31\cdots 11}{19\cdots 11}a^{9}+\frac{87\cdots 22}{59\cdots 33}a^{8}+\frac{12\cdots 84}{59\cdots 33}a^{7}-\frac{19\cdots 45}{59\cdots 33}a^{6}-\frac{29\cdots 51}{65\cdots 37}a^{5}-\frac{14\cdots 67}{65\cdots 37}a^{4}+\frac{63\cdots 52}{50\cdots 49}a^{3}+\frac{23\cdots 53}{65\cdots 37}a^{2}+\frac{22\cdots 38}{65\cdots 37}a+\frac{12\cdots 29}{65\cdots 37}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $3$

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  $C_{2}$, which has order $2$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $10$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{10\cdots 91}{59\cdots 33}a^{19}-\frac{17\cdots 51}{19\cdots 11}a^{18}-\frac{69\cdots 66}{59\cdots 33}a^{17}-\frac{14\cdots 46}{59\cdots 33}a^{16}+\frac{25\cdots 22}{59\cdots 33}a^{15}+\frac{95\cdots 62}{59\cdots 33}a^{14}+\frac{78\cdots 30}{59\cdots 33}a^{13}-\frac{27\cdots 73}{59\cdots 33}a^{12}+\frac{45\cdots 87}{59\cdots 33}a^{11}+\frac{11\cdots 45}{59\cdots 33}a^{10}-\frac{34\cdots 32}{59\cdots 33}a^{9}-\frac{58\cdots 86}{59\cdots 33}a^{8}+\frac{31\cdots 45}{65\cdots 37}a^{7}-\frac{39\cdots 77}{59\cdots 33}a^{6}+\frac{31\cdots 60}{85\cdots 57}a^{5}-\frac{58\cdots 17}{19\cdots 11}a^{4}-\frac{37\cdots 52}{19\cdots 11}a^{3}+\frac{71\cdots 95}{65\cdots 37}a^{2}-\frac{25\cdots 05}{65\cdots 37}a-\frac{29\cdots 11}{65\cdots 37}$, $\frac{21\cdots 39}{19\cdots 11}a^{19}-\frac{49\cdots 18}{59\cdots 33}a^{18}-\frac{47\cdots 64}{59\cdots 33}a^{17}-\frac{68\cdots 25}{59\cdots 33}a^{16}+\frac{75\cdots 67}{19\cdots 11}a^{15}+\frac{61\cdots 00}{59\cdots 33}a^{14}+\frac{86\cdots 21}{59\cdots 33}a^{13}-\frac{24\cdots 57}{59\cdots 33}a^{12}-\frac{13\cdots 09}{59\cdots 33}a^{11}+\frac{88\cdots 57}{59\cdots 33}a^{10}-\frac{47\cdots 21}{65\cdots 37}a^{9}-\frac{10\cdots 42}{59\cdots 33}a^{8}+\frac{68\cdots 99}{59\cdots 33}a^{7}+\frac{13\cdots 76}{59\cdots 33}a^{6}+\frac{68\cdots 92}{28\cdots 19}a^{5}-\frac{13\cdots 89}{65\cdots 37}a^{4}-\frac{60\cdots 84}{19\cdots 11}a^{3}+\frac{25\cdots 86}{65\cdots 37}a^{2}-\frac{13\cdots 07}{65\cdots 37}a-\frac{89\cdots 76}{65\cdots 37}$, $\frac{12\cdots 53}{65\cdots 37}a^{19}+\frac{12\cdots 87}{59\cdots 33}a^{18}-\frac{14\cdots 36}{59\cdots 33}a^{17}-\frac{68\cdots 27}{59\cdots 33}a^{16}-\frac{39\cdots 25}{19\cdots 11}a^{15}+\frac{37\cdots 00}{59\cdots 33}a^{14}+\frac{80\cdots 86}{59\cdots 33}a^{13}+\frac{31\cdots 40}{59\cdots 33}a^{12}-\frac{33\cdots 86}{59\cdots 33}a^{11}+\frac{26\cdots 18}{59\cdots 33}a^{10}+\frac{12\cdots 18}{65\cdots 37}a^{9}-\frac{10\cdots 28}{59\cdots 33}a^{8}+\frac{90\cdots 70}{59\cdots 33}a^{7}+\frac{22\cdots 22}{59\cdots 33}a^{6}+\frac{46\cdots 27}{85\cdots 57}a^{5}+\frac{28\cdots 27}{65\cdots 37}a^{4}-\frac{11\cdots 66}{19\cdots 11}a^{3}+\frac{16\cdots 27}{65\cdots 37}a^{2}-\frac{28\cdots 23}{65\cdots 37}a-\frac{29\cdots 41}{65\cdots 37}$, $\frac{12\cdots 05}{59\cdots 33}a^{19}-\frac{75\cdots 31}{19\cdots 11}a^{18}-\frac{75\cdots 51}{59\cdots 33}a^{17}-\frac{19\cdots 57}{59\cdots 33}a^{16}+\frac{67\cdots 95}{19\cdots 11}a^{15}+\frac{10\cdots 12}{59\cdots 33}a^{14}+\frac{13\cdots 47}{59\cdots 33}a^{13}-\frac{26\cdots 78}{65\cdots 37}a^{12}-\frac{30\cdots 81}{59\cdots 33}a^{11}+\frac{11\cdots 92}{59\cdots 33}a^{10}+\frac{14\cdots 52}{19\cdots 11}a^{9}-\frac{18\cdots 45}{45\cdots 41}a^{8}-\frac{42\cdots 13}{19\cdots 11}a^{7}-\frac{11\cdots 77}{19\cdots 11}a^{6}+\frac{32\cdots 46}{85\cdots 57}a^{5}-\frac{43\cdots 98}{19\cdots 11}a^{4}-\frac{32\cdots 51}{19\cdots 11}a^{3}-\frac{59\cdots 46}{65\cdots 37}a^{2}-\frac{15\cdots 26}{50\cdots 49}a-\frac{14\cdots 22}{65\cdots 37}$, $\frac{38\cdots 57}{65\cdots 37}a^{19}+\frac{15\cdots 16}{59\cdots 33}a^{18}-\frac{23\cdots 52}{59\cdots 33}a^{17}-\frac{72\cdots 49}{59\cdots 33}a^{16}+\frac{39\cdots 70}{59\cdots 33}a^{15}+\frac{40\cdots 63}{59\cdots 33}a^{14}+\frac{59\cdots 34}{59\cdots 33}a^{13}-\frac{24\cdots 15}{19\cdots 11}a^{12}-\frac{11\cdots 99}{59\cdots 33}a^{11}+\frac{33\cdots 37}{59\cdots 33}a^{10}+\frac{34\cdots 14}{59\cdots 33}a^{9}-\frac{25\cdots 05}{59\cdots 33}a^{8}-\frac{34\cdots 92}{59\cdots 33}a^{7}+\frac{25\cdots 19}{59\cdots 33}a^{6}+\frac{10\cdots 09}{85\cdots 57}a^{5}+\frac{31\cdots 26}{65\cdots 37}a^{4}-\frac{99\cdots 48}{65\cdots 37}a^{3}-\frac{51\cdots 20}{65\cdots 37}a^{2}+\frac{73\cdots 41}{65\cdots 37}a-\frac{16\cdots 12}{65\cdots 37}$, $\frac{33\cdots 52}{53\cdots 63}a^{19}-\frac{81\cdots 21}{47\cdots 67}a^{18}-\frac{13\cdots 07}{47\cdots 67}a^{17}-\frac{64\cdots 29}{47\cdots 67}a^{16}+\frac{50\cdots 01}{15\cdots 89}a^{15}+\frac{10\cdots 67}{47\cdots 67}a^{14}-\frac{22\cdots 53}{47\cdots 67}a^{13}-\frac{11\cdots 32}{47\cdots 67}a^{12}+\frac{11\cdots 08}{36\cdots 59}a^{11}+\frac{20\cdots 15}{47\cdots 67}a^{10}-\frac{67\cdots 52}{53\cdots 63}a^{9}+\frac{26\cdots 58}{47\cdots 67}a^{8}-\frac{29\cdots 31}{47\cdots 67}a^{7}+\frac{38\cdots 54}{36\cdots 59}a^{6}+\frac{24\cdots 43}{15\cdots 89}a^{5}-\frac{51\cdots 54}{15\cdots 89}a^{4}+\frac{43\cdots 37}{15\cdots 89}a^{3}-\frac{13\cdots 50}{53\cdots 63}a^{2}+\frac{17\cdots 85}{53\cdots 63}a+\frac{13\cdots 43}{40\cdots 51}$, $\frac{73\cdots 85}{19\cdots 11}a^{19}-\frac{14\cdots 53}{59\cdots 33}a^{18}-\frac{13\cdots 91}{59\cdots 33}a^{17}-\frac{28\cdots 36}{59\cdots 33}a^{16}+\frac{14\cdots 35}{15\cdots 47}a^{15}+\frac{18\cdots 55}{59\cdots 33}a^{14}+\frac{14\cdots 29}{59\cdots 33}a^{13}-\frac{56\cdots 36}{59\cdots 33}a^{12}+\frac{11\cdots 59}{59\cdots 33}a^{11}+\frac{22\cdots 41}{59\cdots 33}a^{10}-\frac{29\cdots 31}{19\cdots 11}a^{9}-\frac{62\cdots 11}{59\cdots 33}a^{8}+\frac{27\cdots 75}{59\cdots 33}a^{7}-\frac{26\cdots 90}{59\cdots 33}a^{6}+\frac{48\cdots 28}{65\cdots 37}a^{5}-\frac{29\cdots 40}{50\cdots 49}a^{4}-\frac{19\cdots 03}{19\cdots 11}a^{3}-\frac{15\cdots 35}{65\cdots 37}a^{2}-\frac{30\cdots 28}{65\cdots 37}a-\frac{51\cdots 25}{65\cdots 37}$, $\frac{46\cdots 98}{19\cdots 11}a^{19}+\frac{45\cdots 93}{19\cdots 11}a^{18}-\frac{10\cdots 37}{59\cdots 33}a^{17}-\frac{10\cdots 76}{19\cdots 11}a^{16}+\frac{87\cdots 53}{59\cdots 33}a^{15}+\frac{17\cdots 47}{59\cdots 33}a^{14}+\frac{88\cdots 57}{19\cdots 11}a^{13}-\frac{26\cdots 59}{59\cdots 33}a^{12}-\frac{56\cdots 46}{59\cdots 33}a^{11}+\frac{18\cdots 53}{65\cdots 37}a^{10}+\frac{18\cdots 29}{59\cdots 33}a^{9}-\frac{18\cdots 83}{59\cdots 33}a^{8}-\frac{16\cdots 01}{19\cdots 11}a^{7}+\frac{22\cdots 20}{59\cdots 33}a^{6}+\frac{37\cdots 63}{65\cdots 37}a^{5}+\frac{29\cdots 98}{65\cdots 37}a^{4}-\frac{18\cdots 51}{19\cdots 11}a^{3}-\frac{66\cdots 27}{28\cdots 19}a^{2}-\frac{10\cdots 03}{65\cdots 37}a-\frac{30\cdots 53}{65\cdots 37}$, $\frac{37\cdots 62}{59\cdots 33}a^{19}-\frac{70\cdots 49}{59\cdots 33}a^{18}-\frac{17\cdots 93}{59\cdots 33}a^{17}-\frac{27\cdots 58}{65\cdots 37}a^{16}+\frac{10\cdots 49}{45\cdots 41}a^{15}+\frac{16\cdots 99}{59\cdots 33}a^{14}-\frac{35\cdots 59}{59\cdots 33}a^{13}-\frac{34\cdots 18}{19\cdots 11}a^{12}+\frac{14\cdots 48}{59\cdots 33}a^{11}+\frac{90\cdots 17}{19\cdots 11}a^{10}-\frac{55\cdots 69}{59\cdots 33}a^{9}+\frac{15\cdots 40}{25\cdots 71}a^{8}-\frac{51\cdots 08}{59\cdots 33}a^{7}-\frac{55\cdots 91}{59\cdots 33}a^{6}+\frac{24\cdots 29}{19\cdots 11}a^{5}-\frac{36\cdots 42}{15\cdots 47}a^{4}+\frac{13\cdots 20}{65\cdots 37}a^{3}-\frac{92\cdots 86}{65\cdots 37}a^{2}+\frac{18\cdots 06}{65\cdots 37}a-\frac{10\cdots 54}{65\cdots 37}$, $\frac{78\cdots 16}{65\cdots 37}a^{19}-\frac{32\cdots 45}{19\cdots 11}a^{18}-\frac{56\cdots 12}{59\cdots 33}a^{17}-\frac{13\cdots 97}{19\cdots 11}a^{16}+\frac{34\cdots 13}{59\cdots 33}a^{15}+\frac{62\cdots 76}{59\cdots 33}a^{14}-\frac{58\cdots 12}{65\cdots 37}a^{13}-\frac{34\cdots 00}{59\cdots 33}a^{12}+\frac{13\cdots 53}{59\cdots 33}a^{11}+\frac{40\cdots 39}{19\cdots 11}a^{10}-\frac{10\cdots 90}{59\cdots 33}a^{9}-\frac{17\cdots 56}{59\cdots 33}a^{8}+\frac{53\cdots 06}{19\cdots 11}a^{7}+\frac{48\cdots 75}{59\cdots 33}a^{6}+\frac{43\cdots 07}{19\cdots 11}a^{5}-\frac{91\cdots 60}{19\cdots 11}a^{4}-\frac{31\cdots 83}{65\cdots 37}a^{3}+\frac{53\cdots 17}{65\cdots 37}a^{2}-\frac{99\cdots 22}{65\cdots 37}a+\frac{59\cdots 75}{65\cdots 37}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 62306146.5873 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{9}\cdot 62306146.5873 \cdot 1}{2\cdot\sqrt{2115524933097244001040375742464}}\cr\approx \mathstrut & 1.30758710577 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^20 - 7*x^18 - 16*x^17 + 18*x^16 + 100*x^15 + 102*x^14 - 222*x^13 - 93*x^12 + 1168*x^11 + 15*x^10 - 814*x^9 + 791*x^8 - 636*x^7 + 2038*x^6 - 384*x^5 - 2151*x^4 + 2040*x^3 - 3366*x^2 + 252*x - 423) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^20 - 7*x^18 - 16*x^17 + 18*x^16 + 100*x^15 + 102*x^14 - 222*x^13 - 93*x^12 + 1168*x^11 + 15*x^10 - 814*x^9 + 791*x^8 - 636*x^7 + 2038*x^6 - 384*x^5 - 2151*x^4 + 2040*x^3 - 3366*x^2 + 252*x - 423, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - 7*x^18 - 16*x^17 + 18*x^16 + 100*x^15 + 102*x^14 - 222*x^13 - 93*x^12 + 1168*x^11 + 15*x^10 - 814*x^9 + 791*x^8 - 636*x^7 + 2038*x^6 - 384*x^5 - 2151*x^4 + 2040*x^3 - 3366*x^2 + 252*x - 423); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^20 - 7*x^18 - 16*x^17 + 18*x^16 + 100*x^15 + 102*x^14 - 222*x^13 - 93*x^12 + 1168*x^11 + 15*x^10 - 814*x^9 + 791*x^8 - 636*x^7 + 2038*x^6 - 384*x^5 - 2151*x^4 + 2040*x^3 - 3366*x^2 + 252*x - 423); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^{10}.\SOPlus(4,4)$ (as 20T1023):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A non-solvable group of order 7372800
The 324 conjugacy class representatives for $C_2^{10}.\SOPlus(4,4)$
Character table for $C_2^{10}.\SOPlus(4,4)$

Intermediate fields

\(\Q(\sqrt{3}) \), 10.6.38998285028352.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 20 sibling: data not computed
Degree 40 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.12.0.1}{12} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.4.0.1}{4} }^{2}$ ${\href{/padicField/11.10.0.1}{10} }{,}\,{\href{/padicField/11.5.0.1}{5} }^{2}$ R $20$ ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ ${\href{/padicField/23.10.0.1}{10} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.10.0.1}{10} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }^{2}{,}\,{\href{/padicField/31.4.0.1}{4} }^{2}$ ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.5.0.1}{5} }^{2}$ ${\href{/padicField/41.6.0.1}{6} }^{2}{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ ${\href{/padicField/43.12.0.1}{12} }{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}$ ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{5}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{4}$ ${\href{/padicField/59.10.0.1}{10} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.5.2.10a1.2$x^{10} + 2 x^{7} + 4 x^{5} + x^{4} + 4 x^{2} + 9$$2$$5$$10$$C_{10}$$$[2]^{5}$$
2.5.2.10a1.2$x^{10} + 2 x^{7} + 4 x^{5} + x^{4} + 4 x^{2} + 9$$2$$5$$10$$C_{10}$$$[2]^{5}$$
\(3\) Copy content Toggle raw display 3.1.4.3a1.2$x^{4} + 6$$4$$1$$3$$D_{4}$$$[\ ]_{4}^{2}$$
3.1.4.3a1.2$x^{4} + 6$$4$$1$$3$$D_{4}$$$[\ ]_{4}^{2}$$
3.1.6.6a1.2$x^{6} + 3 x + 6$$6$$1$$6$$C_3^2:D_4$$$[\frac{5}{4}, \frac{5}{4}]_{4}^{2}$$
3.1.6.6a1.2$x^{6} + 3 x + 6$$6$$1$$6$$C_3^2:D_4$$$[\frac{5}{4}, \frac{5}{4}]_{4}^{2}$$
\(13\) Copy content Toggle raw display $\Q_{13}$$x + 11$$1$$1$$0$Trivial$$[\ ]$$
$\Q_{13}$$x + 11$$1$$1$$0$Trivial$$[\ ]$$
13.2.1.0a1.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
13.1.2.1a1.2$x^{2} + 26$$2$$1$$1$$C_2$$$[\ ]_{2}$$
13.2.1.0a1.1$x^{2} + 12 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
13.1.3.2a1.3$x^{3} + 52$$3$$1$$2$$C_3$$$[\ ]_{3}$$
13.1.3.2a1.3$x^{3} + 52$$3$$1$$2$$C_3$$$[\ ]_{3}$$
13.6.1.0a1.1$x^{6} + 10 x^{3} + 11 x^{2} + 11 x + 2$$1$$6$$0$$C_6$$$[\ ]^{6}$$
\(107\) Copy content Toggle raw display 107.2.1.0a1.1$x^{2} + 103 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
107.2.1.0a1.1$x^{2} + 103 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
107.2.1.0a1.1$x^{2} + 103 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
107.1.2.1a1.2$x^{2} + 214$$2$$1$$1$$C_2$$$[\ ]_{2}$$
107.2.1.0a1.1$x^{2} + 103 x + 2$$1$$2$$0$$C_2$$$[\ ]^{2}$$
107.1.3.2a1.1$x^{3} + 107$$3$$1$$2$$S_3$$$[\ ]_{3}^{2}$$
107.1.3.2a1.1$x^{3} + 107$$3$$1$$2$$S_3$$$[\ ]_{3}^{2}$$
107.4.1.0a1.1$x^{4} + 13 x^{2} + 79 x + 2$$1$$4$$0$$C_4$$$[\ ]^{4}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)