Normalized defining polynomial
\( x^{20} - 8 x^{19} + 34 x^{18} - 128 x^{17} + 423 x^{16} - 1156 x^{15} + 2910 x^{14} - 7024 x^{13} + 15179 x^{12} - 29364 x^{11} + 59722 x^{10} - 102224 x^{9} + 163695 x^{8} - 280712 x^{7} + 390516 x^{6} - 438328 x^{5} + 607404 x^{4} - 546072 x^{3} + 321288 x^{2} - 84952 x + 6862 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-20562460332300807986799747065184256=-\,2^{48}\cdot 31^{7}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{17} - \frac{1}{3} a^{16} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{13977944058139753250169761753251739909753015131905579} a^{19} + \frac{242726592143906223663364812268030396848465137819522}{4659314686046584416723253917750579969917671710635193} a^{18} + \frac{1925446413536268041874289333427989866562620546619867}{13977944058139753250169761753251739909753015131905579} a^{17} + \frac{1747303337881703259015592037943682364299343183768368}{4659314686046584416723253917750579969917671710635193} a^{16} - \frac{1600702447251439227353486604778269001224501896817217}{4659314686046584416723253917750579969917671710635193} a^{15} + \frac{2784053600398772469124237590624529514738457200183141}{13977944058139753250169761753251739909753015131905579} a^{14} + \frac{3347645791423348354433185605753402732948572298001384}{13977944058139753250169761753251739909753015131905579} a^{13} - \frac{2285958787625343326085502094202329104144167686050166}{13977944058139753250169761753251739909753015131905579} a^{12} + \frac{6163233112452087496626338824377460149141735651148138}{13977944058139753250169761753251739909753015131905579} a^{11} + \frac{2982590573090644194287873647496417632345020573733544}{13977944058139753250169761753251739909753015131905579} a^{10} + \frac{2488999899154834160661154604072948173511241241244417}{13977944058139753250169761753251739909753015131905579} a^{9} - \frac{5081273195518375155572482945994660737435027405762063}{13977944058139753250169761753251739909753015131905579} a^{8} - \frac{6449351964183724267456453820489006771655671605617491}{13977944058139753250169761753251739909753015131905579} a^{7} + \frac{188612028307016571652928447351972483748671995747340}{517701631782953824080361546416731107768630190070577} a^{6} - \frac{1348776831894856728189564924721652813999551663633471}{4659314686046584416723253917750579969917671710635193} a^{5} - \frac{2461177133300284178249026151066567848773342809391712}{13977944058139753250169761753251739909753015131905579} a^{4} - \frac{4258831690329533630792658499162178201042456796510932}{13977944058139753250169761753251739909753015131905579} a^{3} + \frac{3150852933187199922059738584524665133678328739725361}{13977944058139753250169761753251739909753015131905579} a^{2} - \frac{6868704382057012533582161869576302566245512471108305}{13977944058139753250169761753251739909753015131905579} a + \frac{5312768863627789097458273820311556533375289291543020}{13977944058139753250169761753251739909753015131905579}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 269909515.523 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 384 conjugacy class representatives for t20n1037 are not computed |
| Character table for t20n1037 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.10 | $x^{8} + 16$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.12.24.342 | $x^{12} + 4 x^{11} + 2 x^{10} + 4 x^{9} + 4 x^{5} - 2 x^{4} + 4 x^{3} - 2 x^{2} + 4 x - 2$ | $12$ | $1$ | $24$ | $C_2 \times S_4$ | $[4/3, 4/3, 3]_{3}^{2}$ | |
| 31 | Data not computed | ||||||
| 227 | Data not computed | ||||||